Thermodynamic equationsThermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics. One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot.
Volume (thermodynamics)In thermodynamics, the volume of a system is an important extensive parameter for describing its thermodynamic state. The specific volume, an intensive property, is the system's volume per unit of mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature. For example, volume is related to the pressure and temperature of an ideal gas by the ideal gas law. The physical volume of a system may or may not coincide with a control volume used to analyze the system.
Capacité thermique molaireLa capacité thermique molaire est donnée par la quantité d'énergie apportée par échange thermique pour élever d'une unité la température d'une mole d'une substance. Dans le Système international l'unité est donc le joule par mole kelvin (). La détermination des valeurs des capacités thermiques des substances relève de la calorimétrie. Remarques : on définit également des capacités thermiques massiques (valeurs rapportées à l'unité de matière, c'est-à-dire une mole) ; il convient de distinguer les capacités à volume constant et les capacités à pression constante (la différence étant particulièrement importante pour les gaz).
Indice adiabatiqueEn thermodynamique, l'indice adiabatique d'un gaz (corps pur ou mélange), aussi appelé coefficient adiabatique, exposant adiabatique ou coefficient de Laplace, noté , est défini comme le rapport de ses capacités thermiques à pression constante (isobare) et à volume constant (isochore) : Le coefficient de Laplace se définit également à partir des capacités thermiques molaires et si la transformation concerne moles de gaz, ou des capacités thermiques massiques (ou spécifiques) et si la transformation concerne
Capacité thermique massiqueLa capacité thermique massique (symbole usuel c), anciennement appelée chaleur massique ou chaleur spécifique, est la capacité thermique d'un matériau rapportée à sa masse. C'est une grandeur qui reflète la capacité d'un matériau à accumuler de l'énergie sous forme thermique, pour une masse donnée, quand sa température augmente. Une grande capacité thermique signifie qu'une grande quantité d'énergie peut être stockée, moyennant une augmentation relativement faible de la température.
Capacité thermiqueLa capacité thermique (anciennement capacité calorifique) d'un corps est une grandeur qui mesure la chaleur qu'il faut lui transférer pour augmenter sa température d'un kelvin. Inversement, elle permet de quantifier la possibilité qu'a ce corps d'absorber ou de restituer de la chaleur au cours d'une transformation pendant laquelle sa température varie. Elle s'exprime en joules par kelvin (). C'est une grandeur extensive : plus la quantité de matière est importante, plus la capacité thermique est grande.