Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating respo ...
— A novel neuron circuit using a Cu/Ti/Al2O3-based conductive-bridge random access memory (CBRAM) device for hardware neural networks that utilize nonvolatile memories as synaptic weights is introduced. The neuronal operations are designed and proved using ...
Institute of Electrical and Electronics Engineers2016
Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learnin ...
This review provides a high-level synthesis of significant recent advances in artificial neural network research, as well as multi-disciplinary concepts connected to the far-reaching goal of obtaining intelligent systems. We assume that a global outlook of ...
We report on the use of deep learning algorithms to perform depth recovery in multiview imaging. We show that if enough training data are provided, a neural network such as multilayer perceptron can be trained to recover the depth in multiview imaging as a ...
The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienen- ...
The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong i ...
Neural networks have been traditionally considered robust in the sense that their precision degrades gracefully with the failure of neurons and can be compensated by additional learning phases. Nevertheless, critical applications for which neural networks ...
Standard automatic speech recognition (ASR) systems follow a divide and conquer approach to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks, namely, feature extraction, acoustic modeling and sequence decoding, ...
The Poisson likelihood with rectified linear function as non-linearity is a physically plausible model to discribe the stochastic arrival process of photons or other particles at a detector. At low emission rates the discrete nature of this process leads t ...