Concept

Processus de Galton-Watson

Le processus de Galton-Watson (ou processus de Bienaymé-Galton-Watson) est un processus stochastique permettant de décrire des dynamiques de populations. C'est un cas particulier de processus de branchements. À l'origine, ce modèle a été introduit par Bienaymé en 1845 et indépendamment par Galton en 1873 en vue d'étudier la disparition des patronymes. Supposons que chaque adulte mâle transmette son patronyme à chacun de ses enfants. Supposons également que le nombre d'enfants de chaque homme soit une variable aléatoire entière (et que la distribution de probabilité soit la même pour tous les hommes dans une lignée). Alors, un patronyme dont les porteurs ont un nombre d'enfant strictement inférieur à 1 en moyenne est amené à disparaître. Inversement, si le nombre moyen d'enfants est supérieur à 1, alors la probabilité de survie de ce nom est non nulle et en cas de survie, le nombre de porteurs du patronyme connaît une croissance exponentielle. On suppose l'existence d'une population d'individus qui se reproduisent de manière indépendante. Chaque individu i donne naissance à individus et meurt. On suppose que les sont des variables aléatoires indépendantes à valeurs entières suivant la distribution Par exemple, si, avec probabilité alors l'individu i meurt sans se reproduire ; si, avec probabilité alors il y a un remplacement un-pour-un de l'individu i ; etc. Notons la taille de la population à la n-ème génération. On suppose souvent que la population possède un seul ancêtre, ce qui se traduit par Le nombre désigne le nombre moyen d'enfants d'un individu typique de la population considérée. L'évolution de la taille moyenne de la population est gouvernée par la formule de récurrence suivante, conséquence de la formule de Wald : d'où il résulte que Notation de Neveu La notation de Neveu permet de décrire rigoureusement l'évolution de la population à l'aide d'un arbre planaire enraciné, qui est en fait l'arbre généalogique de cette population.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.