The point-contact transistor was the first type of transistor to be successfully demonstrated. It was developed by research scientists John Bardeen and Walter Brattain at Bell Laboratories in December 1947. They worked in a group led by physicist William Shockley. The group had been working together on experiments and theories of electric field effects in solid state materials, with the aim of replacing vacuum tubes with a smaller device that consumed less power.
The critical experiment, carried out on December 16, 1947, consisted of a block of germanium, a semiconductor, with two very closely spaced gold contacts held against it by a spring. Brattain attached a small strip of gold foil over the point of a plastic triangle—a configuration which is essentially a point-contact diode. He then carefully sliced through the gold at the tip of the triangle. This produced two electrically isolated gold contacts very close to each other.
The piece of germanium used a surface layer with an excess of electrons. When an electric signal traveled in through the gold foil, it injected electron holes (points which lack electrons). This created a thin layer which had a scarcity of electrons.
A small positive current applied to one of the two contacts had an influence on the current which flowed between the other contact and the base upon which the block of germanium was mounted. In fact, a small change in the first contact current caused a greater change in the second contact current; thus it was an amplifier. The low-current input terminal into the point-contact transistor is the emitter, while the output high current terminals are the base and collector. This differs from the later type of bipolar junction transistor invented in 1951 that operates as transistors still do, with the low current input terminal as the base and the two high current output terminals as the emitter and collector.
The point-contact transistor was commercialized and sold by Western Electric and others but was eventually superseded by the bipolar junction transistor, which was easier to manufacture and more rugged.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course aims to give a solid introduction to semiconductors, from Silicon to compound semiconductors, making the connection between the physics and their application in real life. We will explore
This lecture overviews and discusses the last trends in the technology and principles of nanoelectronic devices for more aggressive scaling, better performances, added functionalities and lower energy
Ce cours est une introduction aux principes physiques des composants à semiconducteurs (transistors bipolaires, MOSFET et autres) et à leur modèlisation. Les performances électriques (digitales et ana
Un transistor à effet de champ (en anglais, Field-effect transistor ou FET) est un dispositif semi-conducteur de la famille des transistors. Sa particularité est d'utiliser un champ électrique pour contrôler la forme et donc la conductivité d'un « canal » dans un matériau semiconducteur. Il concurrence le transistor bipolaire dans de nombreux domaines d'applications, tels que l'électronique numérique. Le premier brevet sur le transistor à effet de champ a été déposé en 1925 par Julius E. Lilienfeld.
A crystal detector is an obsolete electronic component used in some early 20th century radio receivers that consists of a piece of crystalline mineral which rectifies the alternating current radio signal. It was employed as a detector (demodulator) to extract the audio modulation signal from the modulated carrier, to produce the sound in the earphones. It was the first type of semiconductor diode, and one of the first semiconductor electronic devices.
Un condensateur est un composant électronique élémentaire, constitué de deux armatures conductrices (appelées « électrodes ») en influence totale et séparées par un isolant polarisable (ou « diélectrique »). Sa propriété principale est de pouvoir stocker des charges électriques opposées sur ses armatures. La valeur absolue de ces charges est proportionnelle à la valeur absolue de la tension qui lui est appliquée.
Couvre l'analyse et la conception de circuits analogiques avec un accent sur les transistors et les amplificateurs.
Explore le fonctionnement et les caractéristiques des transistors, y compris les dépendances de courant et les différents modes de fonctionnement.
Couvre l'invention et la signification des transistors dans l'électronique moderne.
Individual transistors based on emerging reconfigurable nanotechnologies exhibit electrical conduction for both types of charge carriers. These transistors (referred to as Reconfigurable Field-Effect Transistors (RFETs)) enable dynamic reconfiguration to d ...
Monocrystalline 1.7 eV Mg0.13Cd0.87Te/MgxCd1-xTe (x > 0.13) double heterostructure (DH) solar cells with varying Mg compositions in the barrier layers are grown by molecular beam epitaxy. A Mg0.13Cd0.87Te/Mg0.37Cd0.63Te DH solar cell featuring abrupt inter ...
Graphene nanoribbons (GNRs) - one-dimensional strips of graphene - share many of the exciting properties of graphene, such as ballistic transport over micron dimensions, strength and flexibility, but more importantly, they exhibit a tunable band gap that d ...