Cocaine addiction is the compulsive use of cocaine despite adverse consequences. It arises through epigenetic modification (e.g., through HDAC, sirtuin, and G9a) and transcriptional regulation (primarily through ΔFosB's AP-1 complex) of genes in the nucleus accumbens.
Histone deacetylase inhibitors (HDAC inhibitors) have been implicated as a potential treatment for cocaine addicts. HDACs are enzymes that can deacetylate the histones associated with genes. This can activate genes for transcription. Several experiments have shown that inhibiting HDACs involved in histone H3K9 deacetylation reduces drug seeking behavior.
It has been known that epigenetic regulations, such as the methylation of H3K9, have a key role in the mechanism of addiction. Recent studies have shown that administering HDAC inhibitors can help reduce the craving for cocaine in rats. Trichostatin A (TsA) is an HDAC inhibitor associated with reduced cocaine-seeking behaviors; it inhibits HDAC classes 1, 3, 4, 6, and 10. Since this HDAC inhibitor has such a significant effect on cocaine-seeking behaviors, scientists have speculated about their ability to reduce a person who is addicted to cocaine's risk of relapse in the rat model system during rehab.
After several tests in which rats were exposed to cocaine followed by either an HDAC inhibitor or a placebo, it was found that HDAC inhibitors had a significant effect on lowering cocaine-seeking behavior. This also suggests an epigenetic mechanism involved in HDAC chromatin regulation. The data is crucial to proving the hypothesis that trichostatin A can remodel chromatin structure and prevent behavioral changes following cocaine exposure. Tests also revealed that HDAC inhibitor administration can not only prevent addiction but also helps reduce the risk of relapse in cocaine addicts in the rat model system.
As the previous findings suggest, chronic cocaine use caused both alterations in the chromatin remodeling activity of HDACs and drug-seeking behavior. Renthal et al.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Histone acetylation and deacetylation are the processes by which the lysine residues within the N-terminal tail protruding from the histone core of the nucleosome are acetylated and deacetylated as part of gene regulation. Histone acetylation and deacetylation are essential parts of gene regulation. These reactions are typically catalysed by enzymes with "histone acetyltransferase" (HAT) or "histone deacetylase" (HDAC) activity. Acetylation is the process where an acetyl functional group is transferred from one molecule (in this case, acetyl coenzyme A) to another.
Introduisez le rôle de la régulation de la chromatine dans la formation de la mémoire, les influences génétiques et épigénétiques sur l'apprentissage et le potentiel des inhibiteurs de l'HDAC en tant qu'améliorateurs cognitifs.
Enquête sur la façon dont le comportement maternel façonne la réponse au stress grâce à l'épigénétique et discute des influences génétiques par rapport à l'épigénétique sur les traits.
Explore les mécanismes épigénétiques dans la formation de la mémoire, les traumatismes et le vieillissement, en se concentrant sur les biomarqueurs et les inhibiteurs de l'HDAC.
BACKGROUND & AIMS: SIRT5 plays pleiotropic roles via post-translational modifications, serving as a tumor suppressor, or an oncogene, in different tumors. However, the role SIRT5 plays in the initiation and progression of pancreatic ductal adenocarcinoma ( ...
Learning and memory rely on synaptic communication in which intracellular signals are transported to the nucleus to stimulate transcriptional activation. Memory induced transcriptional increases are accompanied by alterations to the epigenetic landscape an ...
EPFL2022
,
SIRT5 is a member of the sirtuin family of NAD(+)-dependent protein lysine deacylases implicated in a variety of physiological processes. SIRT5 removes negatively charged malonyl, succinyl, and glutaryl groups from lysine residues and thereby regulates mul ...