Reactive intermediates formed upon irradiation of chromophoric dissolved organic matter (CDOM) contribute to the degradation of various organic contaminants in surface waters. Besides well-studied "short-lived" photo oxidants, such as triplet state CDOM (3 ...
Exposing a molecule to an intense light pulse can create a nonstationary quantum state, thus launching correlated dynamics of electrons and nuclei. Although much had been achieved in the understanding of fundamental physics behind the electron-nuclear inte ...
Over the past twenty years, photochemical transformations have gained in importance in organic chemistry. Indeed, the development of photocatalysts has allowed the use of visible light as an energy source for chemical transformations. More specifically, ph ...
Organic radicals are highly active species that can undergo various transformations. Electrochemistry and photochemistry are efficient methods for the generation of these species of high energy, through single electron transfer processes under mild conditi ...
Recently, we suggested that hypobromous acid (HOBr) is a sink for the marine volatile organic sulfur compound dimethyl sulfide (DMS). However, HOBr is also known to react with reactive moieties of dissolved organic matter (DOM) such as phenolic compounds t ...
The activation of small molecules is a paramount challenge in modern chemistry. The use of cheap and abundant molecules such as N2, H2, CO2, or CO as energy supplies or as precursors for fine chemicals production is highly desirable. In particular, the onl ...
This study focuses on the effects of ozonation on the optical and photochemical properties of dissolved organic matter (DOM). Upon ozonation, a decrease in light absorption properties of DOM was observed concomitantly with a large increase in singlet oxyge ...
Achieving the regime of single-photon nonlinearities in photonic devices by just exploiting the intrinsic high-order susceptibilities of conventional materials would open the door to practical semiconductor-based quantum photonic technologies. Here we show ...
Sodium-nickel-chloride batteries have a proven track record for backup power applications, but also show great potential for large-scale stationary electricity storage currently dominated by lithium-ion batteries. While lithium-ion cells rely on critical c ...
Low bioavailability of iron due to poor solubility of iron(hydr)oxides limits the growth of microorganisms and plants in soils and aquatic environments. Previous studies described accelerated dissolution of iron(hydr)oxides under continuous illumination, b ...