Orientation forteUne orientation forte est, en théorie des graphes, l'attribution d'un sens à chaque arête d'un graphe non orienté (une orientation) qui en fait un graphe fortement connexe. Par exemple, on peut attribuer une orientation forte à un réseau routier s'il est possible de faire de chaque rue un sens unique sans rendre aucune intersection inaccessible. Le théorème de Robbins caractérise les graphes fortement orientables, qui sont exactement les graphes connexes sans pont.
PolyarbreEn mathématiques, et notamment en théorie des graphes, un polyarbre (aussi appelé arbre dirigé, arbre orienté ou singly connected network) est graphe orienté acyclique dont le graphe non orienté sous-jacent est un arbre (théorie des graphes). En d'autres termes, si on remplace les arcs par des arêtes, on obtient un graphe non orienté qui est à la fois connexe et sans cycle. Une polyforêt (ou forêt dirigée ou forêt orientée) est un graphe orienté dont le graphe non orienté sous-jacent est une forêt.
Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Graphe dualEn théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
Multi-arbreEn combinatoire et en théorie des ordres, le terme multi-arbre peut décrire l'une des deux structures suivantes : un graphe orienté acyclique dans lequel l'ensemble des sommets accessibles depuis un nœud est toujours un arbre, ou un ensemble partiellement ordonné dans lequel il n'existe pas quatre éléments a, b, c, et d qui forment un sous-ordre en diamant, avec et mais où b et c sont incomparables (un tel ensemble ordonné est aussi appelé diamond-free poset (ou ordre partiel sans diamant).
Acyclic orientationIn graph theory, an acyclic orientation of an undirected graph is an assignment of a direction to each edge (an orientation) that does not form any directed cycle and therefore makes it into a directed acyclic graph. Every graph has an acyclic orientation. The chromatic number of any graph equals one more than the length of the longest path in an acyclic orientation chosen to minimize this path length. Acyclic orientations are also related to colorings through the chromatic polynomial, which counts both acyclic orientations and colorings.
Eulerian pathIn graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: Given the graph in the image, is it possible to construct a path (or a cycle; i.
Bipolar orientationIn graph theory, a bipolar orientation or st-orientation of an undirected graph is an assignment of a direction to each edge (an orientation) that causes the graph to become a directed acyclic graph with a single source s and a single sink t, and an st-numbering of the graph is a topological ordering of the resulting directed acyclic graph. Let G = (V,E) be an undirected graph with n = |V| vertices. An orientation of G is an assignment of a direction to each edge of G, making it into a directed graph.
Graphe arête-connexeEn théorie des graphes, un graphe k-arête-connexe est un graphe connexe qu'il est possible de déconnecter en supprimant k arêtes et tel que ce k soit minimal. Il existe donc un ou plusieurs ensembles de k arêtes dont la suppression rende le graphe déconnecté, mais la suppression de k-1 arêtes, quelles qu'elles soient, le fait demeurer connexe. Un graphe régulier de degré k est au plus k-arête-connexe et k-sommet-connexe. S'il est effectivement k-arête-connexe et k-sommet-connexe, il est qualifié de graphe optimalement connecté.
Graphe orienté acycliqueEn théorie des graphes, un graphe orienté acyclique (en anglais directed acyclic graph ou DAG), est un graphe orienté qui ne possède pas de circuit. Un tel graphe peut être vu comme une hiérarchie. Un graphe orienté acyclique est un graphe orienté qui ne possède pas de circuit. On peut toujours trouver un sous-graphe couvrant d’un graphe orienté acyclique qui soit un arbre (resp. une forêt). Dans un graphe orienté acyclique, la relation d'accessibilité R(u, v) définie par « il existe un chemin de u à v » est une relation d'ordre partielle.