The knot (nɒt) is a unit of speed equal to one nautical mile per hour, exactly 1.852km/h (approximately 1.151mph or 0.514m/s). The ISO standard symbol for the knot is kn. The same symbol is preferred by the Institute of Electrical and Electronics Engineers (IEEE), while kt is also common, especially in aviation, where it is the form recommended by the International Civil Aviation Organization (ICAO). The knot is a non-SI unit. The knot is used in meteorology, and in maritime and air navigation. A vessel travelling at 1 knot along a meridian travels approximately one minute of geographic latitude in one hour.
1 international knot =
1 nautical mile per hour (by definition),
(exactly),
(approximately),
(approximately),
(approximately)
(approximately).
The length of the internationally agreed nautical mile is 1852m. The US adopted the international definition in 1954, having previously used the US nautical mile (1853.248m). The UK adopted the international nautical mile definition in 1970, having previously used the UK Admiralty nautical mile (6080ft or 1853.184m).
The speeds of vessels relative to the fluids in which they travel (boat speeds and air speeds) are measured in knots. For consistency, the speeds of navigational fluids (ocean currents, tidal streams, river currents and wind speeds) are also measured in knots. Thus, speed over the ground (SOG; ground speed (GS) in aircraft) and rate of progress towards a distant point ("velocity made good", VMG) are also given in knots.
Until the mid-19th century, vessel speed at sea was measured using a chip log. This consisted of a wooden panel, attached by line to a reel, and weighted on one edge to float perpendicularly to the water surface and thus present substantial resistance to the water moving around it. The chip log was cast over the stern of the moving vessel and the line allowed to pay out. Knots tied at a distance of 47 feet 3 inches (14.4018 m) from each other, passed through a sailor's fingers, while another sailor used a 30-second sand-glass (28-second sand-glass is the currently accepted timing) to time the operation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La densité du trafic aérien ayant conduit à définir des règles où l'altitude d'un aéronef est devenu un des paramètres essentiel à connaître, il a fallu réaliser un appareil permettant une mesure directe de distance avec la précision requise par les règles de la circulation aérienne. En dehors de certains équipements permettant de mesurer une distance verticale et équipant seulement certains types d'aéronefs le choix s'est orienté vers la mesure directe d'un paramètre physique disponible autour de l'avion : la pression atmosphérique.
Le vent est le mouvement d'une partie du gaz constituant une atmosphère planétaire située à la surface d'une planète. Les vents sont globalement provoqués par un réchauffement inégalement réparti à la surface de la planète provenant du rayonnement stellaire (énergie solaire) et par la rotation de la planète. Sur Terre, ce déplacement est essentiel à l'explication de tous les phénomènes météorologiques. Le vent est mécaniquement décrit par les lois de la dynamique des fluides, comme les courants marins.
La navigation à l'estime est une méthode de navigation qui consiste à déduire la position d'un véhicule (terrestre, maritime, aérien ou spatial ; piloté ou automatique) de sa route et de la distance parcourue depuis sa dernière position connue. Traditionnellement, cette méthode repose sur les instruments mesurant son cap (compas), sa vitesse (loch, tachymètre, badin...) et le temps (chronomètre) ainsi qu'avec l'estimation éventuelle (ou le calcul) de l'influence de l'environnement (courant, vent) sur sa marche.
Explore l'élan et les économies d'énergie dans les collisions, y compris les scénarios élastiques et inélastiques, avec des démonstrations pratiques et des questions conceptuelles.
Local wind speed variations influence the energy and mass fluxes over snow through snow accumulation, sublimation of drifting and blowing snow, or variations in turbulent fluxes over static snow and ice surfaces. We use idealized model experiments to analy ...