Concept

Causalité

Concepts associés (37)
Inférence causale
L'inférence causale est le processus par lequel on peut établir une relation de causalité entre un élément et ses effets. C'est un champ de recherche à la croisée des statistiques, de l'économétrie, de l'épidémiologie, de la méthodologie politique et de l'intelligence artificielle. En 1920, Sewall Wright développe la première path analysis. Cette analyse graphique des relations de causalité entre les variables constitue selon Judea Pearl un travail pionnier dans l'inférence causale.
Méthode expérimentale
Les méthodes expérimentales scientifiques consistent à tester la validité d'une hypothèse, en reproduisant un phénomène (souvent en laboratoire) et en faisant varier un paramètre. Le paramètre que l'on fait varier est impliqué dans l'hypothèse. Le résultat de l'expérience valide ou non l'hypothèse. La démarche expérimentale est appliquée dans les recherches dans des sciences telles que, par exemple, la biologie, la physique, la chimie, l'informatique, la psychologie, ou encore l'archéologie.
A priori et a posteriori
A priori (ou à priori selon l'orthographe rectifiée de 1990) et a posteriori (ou à postériori) sont un couple de concepts utilisés en philosophie et notamment en philosophie de la connaissance. Une connaissance est a priori lorsqu'elle est indépendante de l'expérience sensible et logiquement antérieure. Emmanuel Kant soutient qu'il s'agit d'une connaissance « indépendante de l'expérience ». A contrario, une connaissance a posteriori est empirique, c'est-à-dire qu'elle est « issu[e] de l'expérience » (Kant).
Méthode scientifique
La méthode scientifique désigne l'ensemble des canons guidant ou devant guider le processus de production des connaissances scientifiques, qu'il s'agisse d'observations, d'expériences, de raisonnements, ou de calculs théoriques. Très souvent, le terme de « méthode » engage l'idée implicite de son unicité, tant auprès du grand public que de certains chercheurs, qui de surcroît la confondent parfois avec la seule méthode hypothético-déductive.
Mécanique newtonienne
La mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Rétroaction
vignette|Représentation d'une boucle de rétroaction. La rétroaction (en anglais feedback) est un processus dans lequel un effet intervient aussi comme agent causal sur sa propre origine, la séquence des expressions de la cause principale et des effets successifs formant une boucle de rétroaction. Une rétroaction est une interaction dans laquelle la perturbation d’une variable provoque le changement d'une seconde variable, qui influe à son tour sur la variable initiale. Une rétroaction forme une boucle fermée dans un diagramme de causalité.
Causal model
In the philosophy of science, a causal model (or structural causal model) is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be included/controlled for. They can allow some questions to be answered from existing observational data without the need for an interventional study such as a randomized controlled trial.
Méthode des variables instrumentales
En statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Prophétie autoréalisatrice
La prophétie autoréalisatrice (de l'anglais self-fulfilling prophecy) est un concept de sciences sociales et psychologiques utilisé pour traduire une situation dans laquelle quelqu'un qui prédit ou s'attend à un événement, souvent négatif, modifie ses comportements en fonction de ses croyances, ce qui a pour conséquence de faire advenir la prophétie. Le concept a été introduit par les sociologues nord-américains Robert King Merton et William Isaac Thomas.
Spurious relationship
In statistics, a spurious relationship or spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third, unseen factor (referred to as a "common response variable", "confounding factor", or "lurking variable"). An example of a spurious relationship can be found in the time-series literature, where a spurious regression is a one that provides misleading statistical evidence of a linear relationship between independent non-stationary variables.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.