Reconnaissance d'entités nomméesLa reconnaissance d'entités nommées est une sous-tâche de l'activité d'extraction d'information dans des corpus documentaires. Elle consiste à rechercher des objets textuels (c'est-à-dire un mot, ou un groupe de mots) catégorisables dans des classes telles que noms de personnes, noms d'organisations ou d'entreprises, noms de lieux, quantités, distances, valeurs, dates, etc. À titre d'exemple, on pourrait donner le texte qui suit, étiqueté par un système de reconnaissance d'entités nommées utilisé lors de la campagne d'évaluation MUC: Henri a acheté 300 actions de la société AMD en 2006 Henri a acheté 300 actions de la société AMD en 2006.
Fouille de textesLa fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains.
Informations non structuréesLes informations non structurées ou données non structurées sont des données représentées ou stockées sans format prédéfini. Ces informations sont toujours destinées à des humains. Elles sont typiquement constituées de documents textes ou multimédias, mais peuvent également contenir des dates, des nombres et des faits. Cette absence de format entraîne des irrégularités et des ambiguïtés qui peuvent rendre difficile la compréhension des données, contrairement au cas des données stockées dans des tableurs ou des bases de données par exemple, qui sont des informations structurées.
Extraction de connaissancesL'extraction de connaissances est le processus de création de connaissances à partir d'informations structurées (bases de données relationnelles, XML) ou non structurées (textes, documents, images). Le résultat doit être dans un format lisible par les ordinateurs. Le groupe RDB2RDF W3C est en cours de standardisation d'un langage d'extraction de connaissances au format RDF à partir de bases de données. En français on parle d'« extraction de connaissances à partir des données » (ECD).
WordNetWordNet est une base de données lexicale développée par des linguistes du laboratoire des sciences cognitives de l'université de Princeton depuis une vingtaine d'années. Son but est de répertorier, classifier et mettre en relation de diverses manières le contenu sémantique et lexical de la langue anglaise. Des versions de WordNet pour d'autres langues existent, mais la version anglaise est cependant la plus complète à ce jour. La base de données ainsi que des outils sont disponibles gratuitement.
Semantic role labelingIn natural language processing, semantic role labeling (also called shallow semantic parsing or slot-filling) is the process that assigns labels to words or phrases in a sentence that indicates their semantic role in the sentence, such as that of an agent, goal, or result. It serves to find the meaning of the sentence. To do this, it detects the arguments associated with the predicate or verb of a sentence and how they are classified into their specific roles. A common example is the sentence "Mary sold the book to John.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Ontology learningOntology learning (ontology extraction, ontology generation, or ontology acquisition) is the automatic or semi-automatic creation of ontologies, including extracting the corresponding domain's terms and the relationships between the concepts that these terms represent from a corpus of natural language text, and encoding them with an ontology language for easy retrieval. As building ontologies manually is extremely labor-intensive and time-consuming, there is great motivation to automate the process.
Web scrapingLe web scraping, parfois appelé harvesting ou en français moissonnage, est une technique d'extraction des données de sites Web par l'utilisation d'un script ou d'un programme dans le but de les transformer et les réutiliser dans un autre contexte comme l'enrichissement de bases de données, le référencement ou l'exploration de données. Aux États-Unis, la société hiQ Labs utilise le web scraping sur les données de LinkedIn à des fins de recrutement.
Champ aléatoire conditionnelLes champs aléatoires conditionnels (conditional random fields ou CRFs) sont une classe de modèles statistiques utilisés en reconnaissance des formes et plus généralement en apprentissage statistique. Les CRFs permettent de prendre en compte l'interaction de variables « voisines ». Ils sont souvent utilisés pour des données séquentielles (langage naturel, séquences biologiques, vision par ordinateur). Les CRFs sont un exemple de réseau probabiliste non orienté.