L'annotation sémantique est l'opération consistant à relier le contenu d'un texte à des entités dans une ontologie. Par exemple, pour la phrase «Paris est la capitale de la France.», l'annotation correcte de Paris serait Paris et non Paris Hilton. L'annotation sémantique est une variante plus détaillée mais moins exacte de la méthode des entitiés nommées, car ces dernières décrivent seulement la catégorie de l'entité (Paris est une ville, sans la relier à la bonne page Wikipédia). La tâche d'annotation sémantique est souvent considéré comme un des aspects applicatifs du Web sémantique, notamment pour trouver les métadonnées en relation avec l'identité sémantique des données annotées. L'annotation sémantique est une tâche de fouille de texte proche des méthodes de traitement automatique des langues qui consiste à étiqueter dans un document les mots avec des liens qui pointent vers une description sémantique. Outre l'insertion de contenus qui permettent de compléter un texte (par exemple en identifiant automatiquement les noms de personnes et en fournissant leur date de naissance), l'annotation sémantique joue un rôle essentiel en désambiguïsation en fournissant un identifiant unique représentant parfaitement l'identité du mot ou du groupe de mots annotés. On peut ainsi définir l'annotation sémantique comme la tâche permettant de déterminer l'identité exacte d'un concept contenu dans un texte et de fournir des informations sur ce concept. Ses applications sont nombreuses, de la fouille de données intelligente à la conception d'application de compréhension du langage de haut niveau comme Siri. Les systèmes d'annotation sémantique recourant à de très volumineuses ressources ontologiques, requises pour la désambiguïsation, ainsi qu'à des modèles de classification complexes et eux aussi parfois volumineux, ils sont le plus souvent livrés sous forme de services Web gratuits ou par abonnement. Certains systèmes tels DBpedia Spotlight sont fournis à la fois sous forme de logiciel serveur et de web service, mais sont très complexes à déployer et maintenir.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (8)
Reconnaissance d'entités nommées
La reconnaissance d'entités nommées est une sous-tâche de l'activité d'extraction d'information dans des corpus documentaires. Elle consiste à rechercher des objets textuels (c'est-à-dire un mot, ou un groupe de mots) catégorisables dans des classes telles que noms de personnes, noms d'organisations ou d'entreprises, noms de lieux, quantités, distances, valeurs, dates, etc. À titre d'exemple, on pourrait donner le texte qui suit, étiqueté par un système de reconnaissance d'entités nommées utilisé lors de la campagne d'évaluation MUC: Henri a acheté 300 actions de la société AMD en 2006 Henri a acheté 300 actions de la société AMD en 2006.
Extraction de connaissances
L'extraction de connaissances est le processus de création de connaissances à partir d'informations structurées (bases de données relationnelles, XML) ou non structurées (textes, documents, images). Le résultat doit être dans un format lisible par les ordinateurs. Le groupe RDB2RDF W3C est en cours de standardisation d'un langage d'extraction de connaissances au format RDF à partir de bases de données. En français on parle d'« extraction de connaissances à partir des données » (ECD).
BabelNet
BabelNet est un réseau sémantique multilingue et une ontologie lexicalisée. BabelNet a été créé en intégrant automatiquement la plus grande encyclopédie multilingue – c’est-à-dire Wikipédia – avec le lexique de la langue anglaise le plus connu – WordNet. L’intégration a été réalisée par correspondance automatique. Les entrées manquantes dans d'autres langues ont été obtenues par des techniques de traduction automatique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.