Concept

Terahertz spectroscopy and technology

Résumé
Terahertz spectroscopy detects and controls properties of matter with electromagnetic fields that are in the frequency range between a few hundred gigahertz and several terahertz (abbreviated as THz). In many-body systems, several of the relevant states have an energy difference that matches with the energy of a THz photon. Therefore, THz spectroscopy provides a particularly powerful method in resolving and controlling individual transitions between different many-body states. By doing this, one gains new insights about many-body quantum kinetics and how that can be utilized in developing new technologies that are optimized up to the elementary quantum level. Different electronic excitations within semiconductors are already widely used in lasers, electronic components and computers. At the same time, they constitute an interesting many-body system whose quantum properties can be modified, e.g., via a nanostructure design. Consequently, THz spectroscopy on semiconductors is relevant in revealing both new technological potentials of nanostructures as well as in exploring the fundamental properties of many-body systems in a controlled fashion. There are a great variety of techniques to generate THz radiation and to detect THz fields. One can, e.g., use an antenna, a quantum-cascade laser, a free-electron laser, or optical rectification to produce well-defined THz sources. The resulting THz field can be characterized via its electric field ETHz(t). Present-day experiments can already output ETHz(t) that has a peak value in the range of MV/cm (megavolts per centimeter). To estimate how strong such fields are, one can compute the level of energy change such fields induce to an electron over microscopic distance of one nanometer (nm), i.e., L = 1 nm. One simply multiplies the peak ETHz(t) with elementary charge e and L to obtain e ETHz(t) L = 100 meV. In other words, such fields have a major effect on electronic systems because the mere field strength of ETHz(t) can induce electronic transitions over microscopic scales.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.