In mathematics, more specifically in measure theory, the Baire sets form a σ-algebra of a topological space that avoids some of the pathological properties of Borel sets. There are several inequivalent definitions of Baire sets, but in the most widely used, the Baire sets of a locally compact Hausdorff space form the smallest σ-algebra such that all compactly supported continuous functions are measurable. Thus, measures defined on this σ-algebra, called Baire measures, are a convenient framework for integration on locally compact Hausdorff spaces. In particular, any compactly supported continuous function on such a space is integrable with respect to any finite Baire measure. Every Baire set is a Borel set. The converse holds in many, but not all, topological spaces. Baire sets avoid some pathological properties of Borel sets on spaces without a countable base for the topology. In practice, the use of Baire measures on Baire sets can often be replaced by the use of regular Borel measures on Borel sets. Baire sets were introduced by , and , who named them after Baire functions, which are in turn named after René-Louis Baire. There are at least three inequivalent definitions of Baire sets on locally compact Hausdorff spaces, and even more definitions for general topological spaces, though all these definitions are equivalent for locally compact σ-compact Hausdorff spaces. Moreover, some authors add restrictions on the topological space that Baire sets are defined on, and only define Baire sets on spaces that are compact Hausdorff, or locally compact Hausdorff, or σ-compact. Kunihiko Kodaira defined what we call Baire sets (although he confusingly calls them "Borel sets") of certain topological spaces to be the sets whose characteristic function is a Baire function (the smallest class of functions containing all continuous real-valued functions and closed under pointwise limits of sequences). gives an equivalent definition and defines Baire sets of a topological space to be elements of the smallest σ-algebra such that all continuous real-valued functions are measurable.