Plasticité synaptiqueLa plasticité synaptique, en neurosciences, désigne la capacité des synapses à moduler, à la suite d'un événement particulier - une augmentation ou une diminution ponctuelle et significative de leur activité - l'efficacité de la transmission du signal électrique d'un neurone à l'autre et à conserver, à plus ou moins long terme, une "trace" de cette modulation. De manière schématique, l'efficacité de la transmission synaptique, voire la synapse elle-même, est maintenue et modulée par l'usage qui en est fait.
Dépression synaptique à long termeLa dépression à long terme (DLT) est « une réduction durable de l'efficacité de la transmission synaptique qui fait suite à certains types de stimulation ». Dans la dépression à long terme l'efficacité synaptique se trouve réduite. Cela est dû au fait que les éléments pré-synaptiques et post-synaptiques des neurones ont une décharge nerveuse asynchrone ou ne déchargent plus d'influx nerveux. La puissance de l'influx nerveux est influencée par la participation des récepteurs NDMA, et de leur influx calcique (Ca2+).
Réseau de neurones (biologie)En neurosciences, un réseau de neurones correspond, schématiquement : Soit à un nombre restreint de différents neurones interconnectés, qui ont une fonction précise, comme le ganglion stomatogastrique qui contrôle l'activité des muscles de l'estomac des crustacés. Soit à un grand nombre de neurones similaires interconnectés, qui ont des fonctions plus cognitives, comme les réseaux corticaux qui permettent entre autres la catégorisation.
Plasticité neuronalevignette|Effets schématiques de la neuroplasticité après entraînement Plasticité neuronale, neuroplasticité ou encore plasticité cérébrale sont des termes génériques qui décrivent les mécanismes par lesquels le cerveau est capable de se modifier lors des processus de neurogenèse dès la phase embryonnaire ou lors d'apprentissages. Elle s’exprime par la capacité du cerveau de créer, défaire ou réorganiser les réseaux de neurones et les connexions de ces neurones. Le cerveau est ainsi qualifié de « plastique » ou de « malléable ».
Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.