In geometry, a truncated 5-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 5-cell.
There are two degrees of truncations, including a bitruncation.
The truncated 5-cell, truncated pentachoron or truncated 4-simplex is bounded by 10 cells: 5 tetrahedra, and 5 truncated tetrahedra. Each vertex is surrounded by 3 truncated tetrahedra and one tetrahedron; the vertex figure is an elongated tetrahedron.
The truncated 5-cell may be constructed from the 5-cell by truncating its vertices at 1/3 of its edge length. This transforms the 5 tetrahedral cells into truncated tetrahedra, and introduces 5 new tetrahedral cells positioned near the original vertices.
The truncated tetrahedra are joined to each other at their hexagonal faces, and to the tetrahedra at their triangular faces.
Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.
The truncated tetrahedron-first Schlegel diagram projection of the truncated 5-cell into 3-dimensional space has the following structure:
The projection envelope is a truncated tetrahedron.
One of the truncated tetrahedral cells project onto the entire envelope.
One of the tetrahedral cells project onto a tetrahedron lying at the center of the envelope.
Four flattened tetrahedra are joined to the triangular faces of the envelope, and connected to the central tetrahedron via 4 radial edges. These are the images of the remaining 4 tetrahedral cells.
Between the central tetrahedron and the 4 hexagonal faces of the envelope are 4 irregular truncated tetrahedral volumes, which are the images of the 4 remaining truncated tetrahedral cells.
This layout of cells in projection is analogous to the layout of faces in the face-first projection of the truncated tetrahedron into 2-dimensional space. The truncated 5-cell is the 4-dimensional analogue of the truncated tetrahedron.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In this seminar we will study toric varieties, a well studied class of algebraic varieties which is ubiquitous in algebraic geometry, but also relevant in theoretical physics and combinatorics.
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vertex-transitive even-sided polygons that alternate two different lengths of edges). This is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures (star polygons) are allowed, which greatly expand the possible solutions.
In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination (a 3rd order truncation, up to face-planing) of the regular 5-cell. There are 3 unique degrees of runcinations of the 5-cell, including with permutations, truncations, and cantellations. The runcinated 5-cell or small prismatodecachoron is constructed by expanding the cells of a 5-cell radially and filling in the gaps with triangular prisms (which are the face prisms and edge figures) and tetrahedra (cells of the dual 5-cell).
In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces. Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra. According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to regular skew polyhedra.
New fabrication technologies have significantly decreased the cost of fabrication of shapes with highly complex geometric structure. One important application of complex fine-scale geometric structures is to create variable effective elastic material prope ...