Willy ZwaenepoelWilly Zwaenepoel received his B.S. from the University of Gent, Belgium in 1979, and his M.S. and Ph.D. from Stanford University in 1980 and 1984, respectively. In September 2002, he joined EPFL. He was Dean of the School of Computer and Communications Sciences at EPFL from 2002 to 2011. Before joining EPFL, Willy Zwaenepoel was on the faculty at Rice University, where he was the Karl F. Hasselmann Professor of Computer Science and Electrical and Computer Engineering.
He was elected Fellow of the IEEE in 1998, and Fellow of the ACM in 2000. In 2000 he received the Rice University Graduate Student Association Teaching and Mentoring Award. In 2007 he received the IEEE Tsutomu Kanai award. He was elected to the European Academy in 2009. He won best paper awards at SigComm 1984, OSDI 1999, Usenix 2000, Usenix 2006 and Eurosys 2007. He was program chair of OSDI in 1996 and Eurosys in 2006, and general chair of Mobisys in 2004. He was also an Associate Editor of the IEEE Transactions on Parallel and Distributed Systems from 1998 to 2002.
Willy Zwaenepoel has worked in a variety of aspects of operating and distributed systems, including microkernels, fault tolerance, parallel scientific computing on clusters of workstations, clusters for web services, mobile computing, database replication and virtualization. He is most well known for his work on the Treadmarks distributed shared memory system, which was licensed to Intel and became the basis for Intels OpenMP cluster product. His work on high-performance software for network I/O led to the creation of iMimic Networking, Inc, which he led from 2000 to 2005. His current interests include large-scale data stores and software testing. Most recently, his work in software testing led to the creation of BugBuster, a startup based in Lausanne.
Babak FalsafiBabak is a Professor in the School of Computer and Communication Sciences and the founding director of the EcoCloud, an industrial/academic consortium at EPFL investigating scalable data-centric technologies. He has made numerous contributions to computer system design and evaluation including a scalable multiprocessor architecture which was prototyped by Sun Microsystems (now Oracle), snoop filters and memory streaming technologies that are incorporated into IBM BlueGene/P and Q and ARM cores, and computer system performance evaluation methodologies that have been in use by AMD, HP and Google PerKit . He has shown that hardware memory consistency models are neither necessary (in the 90's) nor sufficient (a decade later) to achieve high performance in multiprocessor systems. These results eventually led to fence speculation in modern microprocessors. His latest work on workload-optimized server processors laid the foundation for the first generation of Cavium ARM server CPUs, ThunderX. He is a recipient of an NSF CAREER award, IBM Faculty Partnership Awards, and an Alfred P. Sloan Research Fellowship. He is a fellow of IEEE and ACM.
Eric MeurvilleEric Meurville holds a Masters Degree in Electrical Engineering and Digital Signal Processing from the Conservatoire National des Arts & Métiers Paris, France. Since 1999, he has been working as head of the Product Design Group at the Laboratoire de Production Microtechnique of the EPFL and is responsible for advanced research projects in the field of wearable and implantable biomedical devices and in the design of innovative biosensors. During the last 9 years, he has been particularly active in bringing long-term implantable medical devices concepts to commercial realization. From 1995 to 1999 at the Institute of Microtechnology of the University of Neuchâtel, Switzerland, his main field of research was multi-modal biometric access control systems. He was also Project Manager at the "Laboratoire d'Etude des Transmissions Ionosphériques" (LETTI), France, from 1992 to 1995 in the field of over the horizon radars. As software and hardware developer of airborne electronic warfare subsystems, he spent 6 years at Thalès (formerly Dassault Electronics), France, from 1986 to 1992.
In 2011, he co-founds gymetrics. The companys primary aim is to bring to market easy to use, non-invasive cell culture monitoring systems. This will enable improved yields and better understanding of the impact of the cell culture environment changes on cell growth.