EE-613: Machine Learning for EngineersThe objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-456: Deep reinforcement learningThis course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
MSE-305: Introduction to atomic-scale modelingThis course provides an introduction to the modeling of matter at the atomic scale, using interactive Jupyter notebooks to see several of the core concepts of materials science in action.
BIOENG-450: In silico neuroscience"In silico Neuroscience" introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies.