Concept

Grand icosicosidodécaèdre

Concepts associés (4)
Grand dodécicosidodécaèdre ditrigonal
In geometry, the great ditrigonal dodecicosidodecahedron (or great dodekified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U42. It has 44 faces (20 triangles, 12 pentagons, and 12 decagrams), 120 edges, and 60 vertices. Its vertex figure is an isosceles trapezoid. It shares its vertex arrangement with the truncated dodecahedron. It additionally shares its edge arrangement with the great icosicosidodecahedron (having the triangular and pentagonal faces in common) and the great dodecicosahedron (having the decagrammic faces in common).
Grand dodécicosaèdre
In geometry, the great dodecicosahedron (or great dodekicosahedron) is a nonconvex uniform polyhedron, indexed as U63. It has 32 faces (20 hexagons and 12 decagrams), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral. It has a composite Wythoff symbol, 3 ( ) |, requiring two different Schwarz triangles to generate it: (3 ) and (3 ). (3 | represents the great dodecicosahedron with an extra 12 pentagons, and 3 | represents it with an extra 20 triangles.) Its vertex figure 6...
Polyèdre uniforme étoilé
En géométrie, un polyèdre uniforme non convexe, ou polyèdre étoilé uniforme, est un polyèdre uniforme auto-coupant. Il peut contenir soit des faces polygonales non convexes, des figures de sommet non convexes ou les deux. Dans l'ensemble complet des 53 polyèdres étoilés uniformes non prismatiques, il y a les 4 réguliers, appelés les solides de Kepler-Poinsot. Il existe aussi deux ensembles infinis de prismes étoilés uniformes et des antiprismes étoilés uniformes. Ici, nous voyons deux exemples de polyèdres
Dodécaèdre tronqué
thumb|Patron (géométrie) En géométrie, le dodécaèdre tronqué est un solide d'Archimède. Il possède 12 faces décagonales régulières, 20 faces triangulaires régulières, 60 sommets et 90 arêtes. Ce polyèdre peut être formé à partir d'un dodécaèdre par troncature des coins, donc les faces pentagonales deviennent des décagones et les coins deviennent des triangles. Les coordonnées cartésiennes suivantes définissent les sommets d'un dodécaèdre tronqué centré à l'origine : où est le nombre d'or.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.