Petit dodécicosaèdreIn geometry, the small dodecicosahedron (or small dodekicosahedron) is a nonconvex uniform polyhedron, indexed as U50. It has 32 faces (20 hexagons and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral. It shares its vertex arrangement with the great stellated truncated dodecahedron. It additionally shares its edges with the small icosicosidodecahedron (having the hexagonal faces in common) and the small ditrigonal dodecicosidodecahedron (having the decagonal faces in common).
Grand dodécaèdre étoilé tronquéIn geometry, the great stellated truncated dodecahedron (or quasitruncated great stellated dodecahedron or great stellatruncated dodecahedron) is a nonconvex uniform polyhedron, indexed as U66. It has 32 faces (20 triangles and 12 decagrams), 90 edges, and 60 vertices. It is given a Schläfli symbol t0,1{5/3,3}.
Petit icosicosidodécaèdreIn geometry, the small icosicosidodecahedron (or small icosified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U31. It has 52 faces (20 triangles, 12 pentagrams, and 20 hexagons), 120 edges, and 60 vertices. It shares its vertex arrangement with the great stellated truncated dodecahedron. It additionally shares its edges with the small ditrigonal dodecicosidodecahedron (having the triangular and pentagrammic faces in common) and the small dodecicosahedron (having the hexagonal faces in common).
Polyèdre uniforme étoiléEn géométrie, un polyèdre uniforme non convexe, ou polyèdre étoilé uniforme, est un polyèdre uniforme auto-coupant. Il peut contenir soit des faces polygonales non convexes, des figures de sommet non convexes ou les deux. Dans l'ensemble complet des 53 polyèdres étoilés uniformes non prismatiques, il y a les 4 réguliers, appelés les solides de Kepler-Poinsot. Il existe aussi deux ensembles infinis de prismes étoilés uniformes et des antiprismes étoilés uniformes. Ici, nous voyons deux exemples de polyèdres