Concept

Grand icosidodécaèdre rétroadouci

Concepts associés (4)
Grand icosidodécaèdre adouci inversé
En géométrie, le grand icosidodécaèdre adouci inversé est un polyèdre uniforme non convexe, indexé sous le nom U69. Les coordonnées cartésiennes des sommets d'un grand icosidodécaèdre adouci inversé centré à l'origine sont les permutations paires de (±2α, ±2, ±2β), (±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)), (±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)), (±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) et (±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)), avec un nombre pair de signes plus, où α = ξ−1/ξ et β = −ξ/τ+1/τ2−1/(ξτ), où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ξ est la plus grande solution réelle positive de ξ3−2ξ=−1/τ, ou approximativement 1,2224727.
Snub (geometry)
In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube (cubus simus) and snub dodecahedron (dodecaedron simum). In general, snubs have chiral symmetry with two forms: with clockwise or counterclockwise orientation. By Kepler's names, a snub can be seen as an expansion of a regular polyhedron: moving the faces apart, twisting them about their centers, adding new polygons centered on the original vertices, and adding pairs of triangles fitting between the original edges.
Grand icosidodécaèdre adouci
En géométrie, le grand icosidodécaèdre adouci est un polyèdre uniforme non convexe, indexé sous le nom U57. Ce polyèdre peut être considéré comme un grand icosaèdre adouci. Les coordonnées cartésiennes des sommets d'un grand icosidodécaèdre adouci centré à l'origine sont les permutations paires de (±2α, ±2, ±2β), (±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)), (±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)), (±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) et (±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)), avec un nombre pair de signes plus, où α = ξ−1/ξ et β = −ξ/τ+1/τ2−1/(ξτ), où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ξ est la solution réelle négative de ξ3−2ξ=−1/τ, ou approximativement −1,5488772.
Dodécaèdre adouci
Le dodécaèdre adouci ou icosidodécaèdre adouci est un solide d'Archimède. Le dodécaèdre possède 92 faces dont 12 sont des pentagones et les 80 autres sont des triangles équilatéraux. Il possède aussi 150 arêtes et 60 sommets. Il a deux formes distinctes, qui sont les images dans un miroir (ou énantiomorphes) l'une de l'autre. Le dodécaèdre peut être engendré en prenant les douze faces pentagonales du dodécaèdre, en les tirant de telle façon qu'aucune ne se touchent, puis en leur donnant toutes une petite rotation de leurs centres (toutes en sens horaire (Sh) ou toutes en sens anti-horaire (Sah)) jusqu'à ce que l'espace entre elles puisse être rempli par des triangles équilatéraux.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.