Salience (also called saliency) is that property by which some thing stands out. Salient events are an attentional mechanism by which organisms learn and survive; those organisms can focus their limited perceptual and cognitive resources on the pertinent (that is, salient) subset of the sensory data available to them. Saliency typically arises from contrasts between items and their neighborhood. They might be represented, for example, by a red dot surrounded by white dots, or by a flickering message indicator of an answering machine, or a loud noise in an otherwise quiet environment. Saliency detection is often studied in the context of the visual system, but similar mechanisms operate in other sensory systems. Just what is salient can be influenced by training: for example, for human subjects particular letters can become salient by training. There can be a sequence of necessary events, each of which has to be salient, in turn, in order for successful training in the sequence; the alternative is a failure, as in an illustrated sequence when tying a bowline; in the list of illustrations, even the first illustration is a salient: the rope in the list must cross over, and not under the bitter end of the rope (which can remain fixed, and not free to move); failure to notice that the first salient has not been satisfied means the knot will fail to hold, even when the remaining salient events have been satisfied. When attention deployment is driven by salient stimuli, it is considered to be bottom-up, memory-free, and reactive. Conversely, attention can also be guided by top-down, memory-dependent, or anticipatory mechanisms, such as when looking ahead of moving objects or sideways before crossing streets. Humans and other animals have difficulty paying attention to more than one item simultaneously, so they are faced with the challenge of continuously integrating and prioritizing different bottom-up and top-down influences.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (32)

SVGC-AVA: 360-Degree Video Saliency Prediction With Spherical Vector-Based Graph Convolution and Audio-Visual Attention

Pascal Frossard, Chenglin Li, Li Wei, Qin Yang, Yuelei Li

Viewers of 360-degree videos are provided with both visual modality to characterize their surrounding views and audio modality to indicate the sound direction. Though both modalities are important for saliency prediction, little work has been done by joint ...
Ieee-Inst Electrical Electronics Engineers Inc2024
Afficher plus
Concepts associés (8)
Visual temporal attention
Visual temporal attention is a special case of visual attention that involves directing attention to specific instant of time. Similar to its spatial counterpart visual spatial attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models.
Maladie d'Alzheimer
La (en allemand ) est une maladie neurodégénérative incurable à ce jour du tissu cérébral qui entraîne la perte progressive et irréversible des fonctions mentales et notamment de la mémoire. C'est la cause la plus fréquente de démence chez l'être humain. En 2015, il y a approximativement de personnes dans le monde atteintes de la maladie d'Alzheimer. Le plus souvent, la maladie débute chez les personnes ayant plus de ; seuls 4 % à 5 % des cas d'Alzheimer commencent avant cet âge.
Trouble obsessionnel compulsif
Le trouble obsessionnel compulsif (abrégé en l'acronyme TOC) est un trouble psychique caractérisé par l'apparition répétée de pensées intrusives — les obsessions — produisant de l'inconfort, de l'inquiétude, de la peur ; et/ou de comportements répétés et ritualisés — les compulsions — pouvant avoir l'effet de diminuer l'anxiété ou de soulager une tension.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.