Concept

Negation introduction

Negation introduction is a rule of inference, or transformation rule, in the field of propositional calculus. Negation introduction states that if a given antecedent implies both the consequent and its complement, then the antecedent is a contradiction. This can be written as: An example of its use would be an attempt to prove two contradictory statements from a single fact. For example, if a person were to state "Whenever I hear the phone ringing I am happy" and then state "Whenever I hear the phone ringing I am not happy", one can infer that the person never hears the phone ringing. Many proofs by contradiction use negation introduction as reasoning scheme: to prove ¬P, assume for contradiction P, then derive from it two contradictory inferences Q and ¬Q. Since the latter contradiction renders P impossible, ¬P must hold.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.