Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DN ...
In this work, we address the problem of query by example spoken term detection (QbE-STD) in zero-resource scenario. State of the art solutions usually rely on dynamic time warping (DTW) based template matching. In contrast, we propose here to tackle the pr ...
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via inter ...
Newcomb's problem is viewed as a dynamic game with an agent and a superior being as players. Depending on whether or not a risk-neutral agent's confidence in the superior being, as measured by a subjective probability assigned to the move order, exceeds a ...
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors' intrinsic sparsity structures. The posterior probabilities are estimated for phonetic an ...
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors' intrinsic sparsity structures. The posterior probabilities are estimated for phonetic an ...
This paper proposes randomly-generated synthetic time series incorporating climate change forecasts to quantify the variation in energy simulation due to weather inputs, i.e., Monte Carlo analysis for uncertainty and sensitivity quantification. The method ...
We hypothesize that optimal deep neural networks (DNN) class-conditional posterior probabilities live in a union of low-dimensional subspaces. In real test conditions, DNN posteriors encode uncertainties which can be regarded as a superposition of unstruct ...
The literature on energy management in manufacturing is rapidly growing. Since the literature is also quite fragmented, we believe that the time has come to delve into current knowledge in the research field to provide directions for policy makers and guid ...