Atmospheric thermodynamicsAtmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the earth's atmosphere and manifest as weather or climate. Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and vertical instabilities in the atmosphere. Atmospheric thermodynamic diagrams are used as tools in the forecasting of storm development.
Planetary boundary layerIn meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, and moisture display rapid fluctuations (turbulence) and vertical mixing is strong.
RadiosondeUne radiosonde, en météorologie, est un appareil constitué d'un ensemble de capteurs pour mesurer les caractéristiques de l'atmosphère depuis le niveau du sol jusqu'à une altitude pouvant dépasser mètres. On y retrouve un thermomètre, un baromètre et un hygromètre. L'appareil est également muni d'un émetteur radio qui transmet en continu les données des capteurs. La radiosonde est emportée par un ballon-sonde, gonflé à l'hélium ou à l'hydrogène, et elle est suivie au radar, par positionnement GPS ou par LORAN-C ce qui permet en plus de calculer sa vitesse de déplacement et donc la direction et la force des vents en altitude.
Processus isothermevignette|250px|Plusieurs isothermes d'un gaz parfait sur un diagramme représentant la pression en fonction du volume (diagramme de Clapeyron). vignette|250px|La zone en bleu correspond au travail dans un processus isotherme (à température constante). vignette|250px|La zone en vert correspond au travail dans un processus adiabatique (sans échange de chaleur). Le travail adiabatique est pris comme référence, indiquant la conservation de l'énergie. Le travail isotherme lui est supérieur dans les deux sens, détente et compression.