Concept

Necklace polynomial

In combinatorial mathematics, the necklace polynomial, or Moreau's necklace-counting function, introduced by , counts the number of distinct necklaces of n colored beads chosen out of α available colors. The necklaces are assumed to be aperiodic (not consisting of repeated subsequences), and counted up to rotation (rotating the beads around the necklace counts as the same necklace), but without flipping over (reversing the order of the beads counts as a different necklace). This counting function also describes, among other things, the dimensions in a free Lie algebra and the number of irreducible polynomials over a finite field. The necklace polynomials are a family of polynomials in the variable such that By Möbius inversion they are given by where is the classic Möbius function. A closely related family, called the general necklace polynomial or general necklace-counting function, is: where is Euler's totient function. The necklace polynomials appear as: The number of aperiodic necklaces (or equivalently Lyndon words) which can be made by arranging n colored beads having α available colors. Two such necklaces are considered equal if they are related by a rotation (but not a reflection). Aperiodic refers to necklaces without rotational symmetry, having n distinct rotations. The polynomials give the number of necklaces including the periodic ones: this is easily computed using Pólya theory. The dimension of the degree n piece of the free Lie algebra on α generators ("Witt's formula"). Here should be the dimension of the degree n piece of the corresponding free Jordan algebra. The number of distinct words of length n in a Hall set. Note that the Hall set provides an explicit basis for a free Lie algebra; thus, this is the generalized setting for the above. The number of monic irreducible polynomials of degree n over a finite field with α elements (when is a prime power). Here is the number of polynomials which are primary (a power of an irreducible). The exponent in the cyclotomic identity.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.