InterPro is a database of protein families, protein domains and functional sites in which identifiable features found in known proteins can be applied to new protein sequences in order to functionally characterise them.
The contents of InterPro consist of diagnostic signatures and the proteins that they significantly match. The signatures consist of models (simple types, such as regular expressions or more complex ones, such as Hidden Markov models) which describe protein families, domains or sites. Models are built from the amino acid sequences of known families or domains and they are subsequently used to search unknown sequences (such as those arising from novel genome sequencing) in order to classify them. Each of the member databases of InterPro contributes towards a different niche, from very high-level, structure-based classifications (SUPERFAMILY and CATH-Gene3D) through to quite specific sub-family classifications (PRINTS and PANTHER).
InterPro's intention is to provide a one-stop-shop for protein classification, where all the signatures produced by the different member databases are placed into entries within the InterPro database. Signatures which represent equivalent domains, sites or families are put into the same entry and entries can also be related to one another. Additional information such as a description, consistent names and Gene Ontology (GO) terms are associated with each entry, where possible.
InterPro contains three main entities: proteins, signatures (also referred to as "methods" or "models") and entries. The proteins in UniProtKB are also the central protein entities in InterPro. Information regarding which signatures significantly match these proteins are calculated as the sequences are released by UniProtKB and these results are made available to the public (see below). The matches of signatures to proteins are what determine how signatures are integrated together into InterPro entries: comparative overlap of matched protein sets and the location of the signatures' matches on the sequences are used as indicators of relatedness.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
redresse=1.15|vignette|Exemples de structures de protéines organisées en domaines distincts. Le domaine de couleur brique, appelé domaine PH, est commun aux deux protéines,. Sa fonction est de fixer le phosphatidylinositol-3,4,5-trisphosphate (PIP3) Un domaine protéique est une partie d'une protéine capable d'adopter une structure de manière autonome ou partiellement autonome du reste de la molécule. C'est un élément modulaire de la structure des protéines qui peuvent ainsi être composées de l'assemblage de plusieurs de ces domaines.
La bioinformatique (ou bio-informatique), est un champ de recherche multidisciplinaire de la biotechnologie où travaillent de concert biologistes, médecins, informaticiens, mathématiciens, physiciens et bioinformaticiens, dans le but de résoudre un problème scientifique posé par la biologie. Plus généralement, la bio-informatique est l'application de la statistique et de l'informatique à la science biologique. Le spécialiste qui travaille à mi-chemin entre ces sciences et l'informatique est appelé bioinformaticien ou bionaute.
Explore l'importance de la randomisation dans la spectrométrie de masse des protéines et la protéomique, en soulignant son rôle dans la minimisation des biais et la garantie de la validité de la recherche.
Explore les techniques de spectrométrie de masse des protéines, y compris les méthodes de marquage, la quantification et la découverte de biomarqueurs.
Protein-protein interaction (PPI) network alignment is a canonical operation to transfer biological knowledge among species. The alignment of PPI-networks has many applications, such as the prediction of protein function, detection of conserved network mot ...
IEEE COMPUTER SOC2020
Networks are central in the modeling and analysis of many large-scale human and technical systems, and they have applications in diverse fields such as computer science, biology, social sciences, and economics. Recently, network mining has been an active a ...
EPFL2016
The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the m ...