Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Plonge dans la propagation en arrière dans l'apprentissage profond, répondant au défi de la disparition du gradient et à la nécessité d'unités cachées efficaces.
Introduit les réseaux de mémoire à long terme (LSTM) comme une solution pour la disparition et l'explosion des gradients dans les réseaux neuronaux récurrents.
Explore le but et le processus de normalisation par lots dans les réseaux neuronaux profonds, en soulignant son importance dans la stabilisation de l'entrée moyenne et la résolution du problème du gradient de fuite.