Baryon Sigmavignette|Premier octet de baryon Les baryons Sigma (aussi appelés particules Sigma) sont des baryons composés d'un quark étrange (dit quark s) et d'une combinaison de quarks up et down, le tout possédant un isospin de 1. Les baryons sigma sont des hypérons. Ils sont notés avec la lettre grecque majuscule Sigma (Σ), avec en exposant leur charge électrique, déterminée par la combinaison de quarks u et d qu'ils possèdent : Σ = uus (différent de l'ununseptium Uus) Σ = uds Σ = dds Il existe deux autres types de baryons Sigma, appelés baryon sigma charmés et baryon Sigma b, possédant respectivement un quark c et un b en lieu et place du quark s.
Baryon DeltaLe baryon delta (noté Δ, majuscule de la lettre grecque delta) est un baryon, une particule de la physique des particules. Les états Δ ont été établis expérimentalement au cyclotron de l'université de Chicago et au synchrocyclotron du Carnegie Institute of Technology au milieu des années 1950, en utilisant des pions positifs accélérés sur des cibles d'hydrogène. L'existence du Δ, avec sa charge électrique inhabituelle de +2, a été un indice crucial dans le développement du modèle des quarks.
Particle Data GroupLe Particle Data Group est une collaboration internationale de physiciens des particules compulsant et réanalysant les résultats publiés relatifs aux propriétés des particules élémentaires et des interactions fondamentales. Il publie également des revues sur les résultats théoriques importants d'un point de vue phénoménologique comme en cosmologie. Le Particle Data Group publie biannuellement sa Review of Particle Physics (Revue de la physique des particules) en version poche, appelé le Particle Data Booklet (Livret de données sur les particules).
Baryon XiEn physique des particules, le baryon Xi (noté , suivant la lettre grecque xi) est le nom donné à une famille de baryons qui peuvent avoir une charge égale à +2, +1, 0 ou -1 e, où e est la charge élémentaire. Comme tous les baryons, ils contiennent trois quarks, mais en particulier un quark up ou un down avec deux quarks lourds (qui peuvent être strange, charm ou bottom). Ils sont instables et se désintègrent rapidement en cascade en particules plus légères.
Brisure de symétrieUne symétrie est brisée quand un système ou les lois qui régissent son comportement ne cessent d'être invariants sous la transformation associée à cette symétrie. On observe des brisures de symétrie en physique (de l'échelle microscopique jusqu'à celle de l'Univers), en chimie (dont de nombreuses transitions de phase) et en biologie (par exemple l'asymétrie gauche-droite chez les Bilatériens). Une symétrie est explicitement brisée lorsque la loi qui régit son comportement est modifiée et n'est plus invariante dû à une cause externe.
TopnessTopness (T, also called truth), a flavour quantum number, represents the difference between the number of top quarks (t) and number of top antiquarks () that are present in a particle: By convention, top quarks have a topness of +1 and top antiquarks have a topness of −1. The term "topness" is rarely used; most physicists simply refer to "the number of top quarks" and "the number of top antiquarks". Like all flavour quantum numbers, topness is preserved under strong and electromagnetic interactions, but not under weak interaction.
Diffusion profondément inélastiqueLa diffusion profondément inélastique est un processus de diffusion entre particules. Ce processus est notamment utilisé pour sonder l'intérieur des hadrons, et en particulier les nucléons, à l'aide d'un faisceau de leptons (électrons, muons ou neutrinos). Le lepton incident vient interagir avec une partie du hadron par l'intermédiaire d'un boson (par exemple un photon virtuel).
LeptogénèseEn cosmologie, la leptogénèse est la formation des leptons dans l'Univers primitif. Les processus responsables de cette leptogénèse, encore mal compris, ont notamment produit une asymétrie entre les leptons et les antileptons peu après le Big Bang, entraînant la domination actuelle des leptons sur les antileptons.