Théorème de MengerEn théorie des graphes, le théorème de Menger est à l'origine du théorème flot-max/coupe-min qui le généralise. Il fut prouvé par Karl Menger en 1927. Le théorème de Menger s'énonce ainsi : Le théorème d'Erdős-Pósa est de même nature que celui de Menger, il relie la taille maximale d'une collection de cycles disjoints à la taille minimale d'un coupe-cycles de sommets (feedback vertex set). J. A. Bondy et U.S.R. Murty, Graph Theory with Applications, libre d'accès uniquement pour l'usage personnel Menger de
Isthme (théorie des graphes)In graph theory, a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion increases the graph's number of connected components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle. For a connected graph, a bridge can uniquely determine a cut. A graph is said to be bridgeless or isthmus-free if it contains no bridges. This type of bridge should be distinguished from an unrelated meaning of "bridge" in graph theory, a subgraph separated from the rest of the graph by a specified subset of vertices; see bridge.
Orientation forteUne orientation forte est, en théorie des graphes, l'attribution d'un sens à chaque arête d'un graphe non orienté (une orientation) qui en fait un graphe fortement connexe. Par exemple, on peut attribuer une orientation forte à un réseau routier s'il est possible de faire de chaque rue un sens unique sans rendre aucune intersection inaccessible. Le théorème de Robbins caractérise les graphes fortement orientables, qui sont exactement les graphes connexes sans pont.
Coupe (théorie des graphes)En théorie des graphes, une coupe d'un graphe est une partition des sommets en deux sous-ensembles. On appelle aussi coupe l'ensemble des arêtes ayant une extrémité dans chaque sous-ensemble de la partition. Si les arêtes ont un poids, le poids de la coupe est la somme des poids respectifs des arêtes de la coupe. Sinon, c'est le nombre d'arêtes dans la coupe. Cet objet apparaît dans la modélisation de nombreux problèmes concernant les réseaux, où l'on recherche une coupe s-t, c'est-à-dire une coupe séparant deux sommets s et t spécifiés.
Graphe dualEn théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
Graphic matroidIn the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs.
Ear decompositionIn graph theory, an ear of an undirected graph G is a path P where the two endpoints of the path may coincide, but where otherwise no repetition of edges or vertices is allowed, so every internal vertex of P has degree two in G. An ear decomposition of an undirected graph G is a partition of its set of edges into a sequence of ears, such that the one or two endpoints of each ear belong to earlier ears in the sequence and such that the internal vertices of each ear do not belong to any earlier ear.
Théorème de RobbinsEn théorie des graphes, le théorème de Robbins, nommé d'après Herbert Robbins qui l'a formulé en 1939, dit que les graphes qui possèdent une orientation forte sont exactement les graphes connexes sans isthme ou graphes 2-arête-connexes. Le théorème dit qu'il est possible d'orienter les arêtes d'un graphe non orienté G pour le transformer en un graphe fortement connexe si et seulement si G est connexe et n'a pas d'isthme : Un graphe non orienté admet une orientation qui le rend fortement connexe si et seulement s'il est connexe sans isthme.
Graphe sommet-connexeEn théorie des graphes, un graphe connexe . Un graphe autre qu'un graphe complet est de degré de sommet-connexité k s'il est k-sommet-connexe sans être k+1-sommet-connexe, donc si k est la taille du plus petit sous-ensemble de sommets dont la suppression déconnecte le graphe. Les graphes complets ne sont pas inclus dans cette version de la définition car ils ne peuvent pas être déconnectés en supprimant des sommets. Le graphe complet à n sommets est de degré de connexité n-1.
Orientation (graph theory)In graph theory, an orientation of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph. A directed graph is called an oriented graph if none of its pairs of vertices is linked by two symmetric edges. Among directed graphs, the oriented graphs are the ones that have no 2-cycles (that is at most one of (x, y) and (y, x) may be arrows of the graph). A tournament is an orientation of a complete graph. A polytree is an orientation of an undirected tree.