Concept

Covariant formulation of classical electromagnetism

Résumé
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems. This article uses the classical treatment of tensors and Einstein summation convention throughout and the Minkowski metric has the form diag(+1, −1, −1, −1). Where the equations are specified as holding in a vacuum, one could instead regard them as the formulation of Maxwell's equations in terms of total charge and current. For a more general overview of the relationships between classical electromagnetism and special relativity, including various conceptual implications of this picture, see Classical electromagnetism and special relativity. Lorentz covariance Lorentz tensors of the following kinds may be used in this article to describe bodies or particles: four-displacement: Four-velocity: where γ(u) is the Lorentz factor at the 3-velocity u. Four-momentum: where is 3-momentum, is the total energy, and is rest mass. Four-gradient: The d'Alembertian operator is denoted , The signs in the following tensor analysis depend on the convention used for the metric tensor. The convention used here is (+ − − −), corresponding to the Minkowski metric tensor: Electromagnetic tensor The electromagnetic tensor is the combination of the electric and magnetic fields into a covariant antisymmetric tensor whose entries are B-field quantities. and the result of raising its indices is where E is the electric field, B the magnetic field, and c the speed of light.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (19)
PHYS-324: Classical electrodynamics
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
PHYS-108: General physics : fluids and electromagnetism
Le cours couvre deux grands chapitres de la physique: l'étude des fluides et l'électromagnétisme. Une introduction aux ondes est également faite pour pouvoir étudier les solutions des équations de l'h
PHYS-470: Nonlinear optics for quantum technologies
This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applica
Afficher plus
Publications associées (46)
Concepts associés (17)
Action de Proca
En physique, plus précisément en théorie des champs en physique des particules, l’action de Proca décrit un champ massif de spin-1 dans l'espace-temps de Minkowski. L'équation du mouvement associée est une équation d'onde relativiste appelée l'équation de Proca. L'action et l'équation de Proca sont nommés d'après le physicien franco-roumain Alexandru Proca. L'équation de Proca apparaît dans le modèle Standard dans lequel elle décrit les bosons de jauge massifs, c'est-à-dire les bosons Z et W.
Champ (physique)
En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Relativistic electromagnetism
Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations. After Maxwell proposed the differential equation model of the electromagnetic field in 1873, the mechanism of action of fields came into question, for instance in the Kelvin’s master class held at Johns Hopkins University in 1884 and commemorated a century later. The requirement that the equations remain consistent when viewed from various moving observers led to special relativity, a geometric theory of 4-space where intermediation is by light and radiation.
Afficher plus
MOOCs associés (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus