Concept

Nombre d'Eddington

In astrophysics, the Eddington number, NEdd, is the number of protons in the observable universe. Eddington originally calculated it as about 1.57e79; current estimates make it approximately e80. The term is named for British astrophysicist Arthur Eddington, who in 1940 was the first to propose a value of NEdd and to explain why this number might be important for physical cosmology and the foundations of physics. Eddington argued that the value of the fine-structure constant, α, could be obtained by pure deduction. He related α to the Eddington number, which was his estimate of the number of protons in the universe. This led him in 1929 to conjecture that α was exactly 1/136. He devised a "proof" that NEdd = 136 × 2256, or about 1.57×1079. Other physicists did not adopt this conjecture and did not accept his argument. In the late 1930s, the best experimental value of the fine-structure constant, α, was approximately 1/137. Eddington then argued, from aesthetic and numerological considerations, that α should be exactly 1/137. Current estimates of NEdd point to a value of about e80. These estimates assume that all matter can be taken to be hydrogen and require assumed values for the number and size of galaxies and stars in the universe. Attempts to find a mathematical basis for this dimensionless constant have continued up to the present time. During a course of lectures that he delivered in 1938 as Tarner Lecturer at Trinity College, Cambridge, Eddington averred that: I believe there are 15 747 724 136 275 002 577 605 653 961 181 555 468 044 717 914 527 116 709 366 231 425 076 185 631 031 296 protons in the universe and the same number of electrons. This large number was soon named the "Eddington number". Shortly thereafter, improved measurements of α yielded values closer to 1/137, whereupon Eddington changed his "proof" to show that α had to be exactly 1/137. The most precise value of α (obtained experimentally in 2012) is: Consequently, no reliable source any longer maintains that α is the reciprocal of an integer.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.