The data processing inequality is an information theoretic concept that states that the information content of a signal cannot be increased via a local physical operation. This can be expressed concisely as 'post-processing cannot increase information'. Let three random variables form the Markov chain , implying that the conditional distribution of depends only on and is conditionally independent of . Specifically, we have such a Markov chain if the joint probability mass function can be written as In this setting, no processing of , deterministic or random, can increase the information that contains about . Using the mutual information, this can be written as : With the equality if and only if , i.e. and contain the same information about , and also forms a Markov chain. One can apply the chain rule for mutual information to obtain two different decompositions of : By the relationship , we know that and are conditionally independent, given , which means the conditional mutual information, . The data processing inequality then follows from the non-negativity of .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.