Concept

Loi de Peirce

En logique, la loi de Peirce est la proposition où désigne l'implication. Elle a été proposée par le logicien et philosophe Charles Sanders Peirce. Cette formule, valide en logique classique, est invalide en logique intuitionniste. Cela signifie que, bien que ne possédant pas de référence explicite à la négation, la loi de Peirce est directement liée à la façon dont on traite celle-ci. Ainsi, on peut montrer que, en logique intuitionniste, il y a équivalence entre loi de Peirce, règle d'élimination de la double négation ou principe du tiers exclu. L'ajout d'un seul de ces principes à la logique intuitionniste redonne la totalité de la logique classique. L'un des principes de la logique classique est le raisonnement par l'absurde. Pour montrer une proposition , on suppose que est faux. Si on aboutit à une contradiction, alors on déduit . Pour montrer que l'implication est valide, nous allons donc supposer et nous devons montrer que est vraie. Raisonnons par l'absurde et supposons que soit fausse. Mais si est fausse, par contre l'implication est vraie. Comme on a supposé et que l'hypothèse est vraie, la conclusion est également vraie, d'où une contradiction. On peut aussi la démontrer en se servant de quelques principes comme la contraposée, les lois de De Morgan et le principe du tiers exclu, également valides en logique classique. La loi de Peirce est en effet équivalente à : Ce qui est vrai selon le principe du tiers exclu . La loi de Peirce n'est pas valide en logique intuitionniste. La logique intuitionniste traite la négation de la façon suivante (on suppose le lecteur familier avec des notations qui sont précisées par exemple dans l'article calcul des propositions) : Si on a à la fois une proposition et sa négation , alors on a une contradiction, notée (règle dite d'élimination de la négation) ; Si une proposition conduit à une contradiction, alors c'est que est valide (règle dite d'introduction de la négation).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.