Beggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. This genus was one of the first bacteria discovered by Ukrainian botanist Sergei Winogradsky. During his research in Anton de Bary's laboratory of botany in 1887, he found that Beggiatoa oxidized hydrogen sulfide (H2S) as an energy source, forming intracellular sulfur droplets, oxygen is the terminal electron acceptor and CO2 is used as a carbon source. Winogradsky named it in honor of the Italian doctor and botanist Francesco Secondo Beggiato (1806 - 1883), from Venice. Winogradsky referred to this form of metabolism as "inorgoxidation" (oxidation of inorganic compounds), today called chemolithotrophy. These organisms live in sulfur-rich environments such as soil, both marine and freshwater, in the deep sea hydrothermal vents and in polluted marine environments. The finding represented the first discovery of lithotrophy. Two species of Beggiatoa have been formally described: the type species Beggiatoa alba and Beggiatoa leptomitoformis, the latter of which was only published in 2017. This colorless and filamentous bacterium, sometimes in association with other sulfur bacteria (for example the genus Thiothrix), can be arranged in biofilm visible to the naked eye formed by a very long white filamentous mat, the white color is due to the stored sulfur. Species of Beggiatoa have cells up to 200 μm in diameter and they are one of the largest prokaryotes on Earth.
The genera Beggiatoa is a quite diverse group as it has representatives occupying several habitats and niches, both in fresh and salt water. In the past they have been confused as close relatives of Oscillatoria spp. (Cyanobacteria) for the morphology and motility characters, but 5S rRNA analysis showed that members of Beggiatoa are phylogenetically distant from Cyanobacteria being members of the Gammaproteobacteria phylum.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Seaweed, or macroalgae, refers to thousands of species of macroscopic, multicellular, marine algae. The term includes some types of Rhodophyta (red), Phaeophyta (brown) and Chlorophyta (green) macroalgae. Seaweed species such as kelps provide essential nursery habitat for fisheries and other marine species and thus protect food sources; other species, such as planktonic algae, play a vital role in capturing carbon, producing at least 50% of Earth's oxygen. Natural seaweed ecosystems are sometimes under threat from human activity.
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.
Sergueï Nikolaïevitch Vinogradski (en Сергей Николаевич Виноградский), aussi orthographié Winogradsky, est un microbiologiste ukrainien, né le à Kiev et mort le à Brie-Comte-Robert. Sergueï Vinogradski est né à Kiev, en Ukraine (alors dans l'Empire russe) dans une famille de notables fortunés. Parmi ses ancêtres paternels se trouvent des cosaques atamans, et du côté maternel, la famille ataman Skoropadsky. Son père, Nikolaï Constantinovitch Vinogradski, né en Bessarabie, est diplômé de Kiev puis directeur de banque.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Two anaerobic, tetrachloroethene- (PCE-) respiring bacterial isolates, designated strain ACSDCE T and strain ACSTCE, were characterized using a polyphasic approach. Cells were Gram-stain-negative, motile, non-spore-forming and shared a vibrioid- to spirill ...
2023
Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II ...
AMER SOC MICROBIOLOGY2023
, , , , ,
Soil microbiomes harbor unparalleled functional and phylogenetic diversity and are sources of novel metabolisms. However, extracting isolates with a targeted function from complex microbiomes is not straightforward, particularly if the associated phenotype ...