A logconcave likelihood is as important to proper statistical inference as a convex cost function is important to variational optimization. Quantization is often disregarded when writing likelihood models, ignoring the limitations of the physical detectors ...
IEEE Institute of Electrical and Electronics Engineers2022
In the domains of machine learning, data science and signal processing, graph or network data, is becoming increasingly popular. It represents a large portion of the data in computer, transportation systems, energy networks, social, biological, and other s ...
Visual Question Answering (VQA) on remote sensing imagery can help non-expert users in extracting information from Earth observation data. Current approaches follow a neural encoder-decoder design, combining convolutional and recurrent encoders together wi ...
Nowadays, image and video are the data types that consume most of the resources of modern communication channels, both in fixed and wireless networks. Thus, it is vital to compress visual data as much as possible, while maintaining some target quality leve ...
Point cloud is a promising imaging modality for the representation of 3D media. The vast volume of data associated with it requires efficient compression solutions, with lossy algorithms leading to larger bit-rate savings at the expense of visual impairmen ...
Modern information technologies and human-centric communication systems employ advanced content representations for richer portrayals of the real world. The newly adopted imaging modalities offer additional information cues and permit the depiction of real ...
The diffusion strategy for distributed learning from streaming data employs local stochastic gradient updates along with exchange of iterates over neighborhoods. In Part I [3] of this work we established that agents cluster around a network centroid and pr ...
Learning-based image codecs produce different compression artifacts, when compared to the blocking and blurring degradation introduced by conventional image codecs, such as JPEG, JPEG~2000 and HEIC. In this paper, a crowdsourcing based subjective quality e ...
We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection–diffusion–reaction equations based on the COmpRessed SolvING (CORSING) paradigm. Combining the Petrov–Galerkin technique with the compressed ...
Driven by the need to solve increasingly complex optimization problems in signal processing and machine learning, there has been increasing interest in understanding the behavior of gradient-descent algorithms in non-convex environments. Most available wor ...