The Paillier cryptosystem, invented by and named after Pascal Paillier in 1999, is a probabilistic asymmetric algorithm for public key cryptography. The problem of computing n-th residue classes is believed to be computationally difficult. The decisional composite residuosity assumption is the intractability hypothesis upon which this cryptosystem is based. The scheme is an additive homomorphic cryptosystem; this means that, given only the public key and the encryption of and , one can compute the encryption of . The scheme works as follows: Choose two large prime numbers and randomly and independently of each other such that . This property is assured if both primes are of equal length. Compute and . lcm means Least Common Multiple. Select random integer where Ensure divides the order of by checking the existence of the following modular multiplicative inverse: , where function is defined as . Note that the notation does not denote the modular multiplication of times the modular multiplicative inverse of but rather the quotient of divided by , i.e., the largest integer value to satisfy the relation . The public (encryption) key is . The private (decryption) key is If using p,q of equivalent length, a simpler variant of the above key generation steps would be to set and , where . The simpler variant is recommended for implementational purposes, because in the general form the calculation time of can be very high with sufficiently large primes p,q. Let be a message to be encrypted where Select random where and Compute ciphertext as: Let be the ciphertext to decrypt, where Compute the plaintext message as: As the original paper points out, decryption is "essentially one exponentiation modulo ." A notable feature of the Paillier cryptosystem is its homomorphic properties along with its non-deterministic encryption (see Electronic voting in Applications for usage).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.