Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Direct simulation Monte-Carlo (DSMC) is the most established method for rarefied gas flow simulations. It is valid from continuum to near vacuum, but in cases involving small Knudsen numbers (Kn), it suffers from high computational cost. The Fokker-Planck ...
Atomistic-continuum multiscale modelling is becoming an increasingly popular tool for simulating the behaviour of materials due to its computational efficiency and reliable accuracy. In the case of ferromagnetic materials, the atomistic approach handles th ...
The long-range correction to the surface tension can amount to up to 55% of the calculated value of the surface tension for cutoffs in the range of 2.1-6.4 sigma. The calculation of the long-range corrections to the surface tension and to the configuration ...
The molecular dipole moment (mu) is a central quantity in chemistry. It is essential in predicting infrared and sum-frequency generation spectra as well as induction and long-range electrostatic interactions. Furthermore, it can be extracted directly-via t ...
The simulation of condensed matter in first principles Molecular Dynamics (FPMD) heavily relies on Kohn-Sham Density Functional Theory (KS-DFT) calculations. The accuracy of such simulations is governed by the reliability of the underlying potential energy ...
The most successful and popular machine learning models of atomic-scale properties derive their transferability from a locality ansatz. The properties of a large molecule or a bulk material are written as a sum over contributions that depend on the configu ...
The ability to perform first-principles calculations of electronic and vibrational properties of two-dimensional heterostructures in a field-effect setup is crucial for the understanding and design of next-generation devices. We present here an implementat ...
We perform ab initio calculations of the coupling between electrons and small-momentum polar-optical phonons in monolayer transition-metal dichalcogenides of the 2H type: MoS2, MoSe2, MoTe2, WS2, and WSe2. The polar-optical coupling with longitudinal optic ...
Simultaneous tracking of many thousands of individual particles in live cells is possible now with the advent of high-density superresolution imaging methods. We present an approach to extract local biophysical properties of cell-particle interaction from ...
The molecular dipole moment (mu) is a central quantity in chemistry. It is essential in predicting infrared and sum-frequency generation spectra as well as induction and long-range electrostatic interactions. Furthermore, it can be extracted directly-via t ...