vignette|Vidéo montrant un processus de reconnaissance optique de caractères effectué en direct grâce à un scanner portable. La reconnaissance optique de caractères (ROC, ou OCR pour l'anglais optical character recognition), ou océrisation, désigne les procédés informatiques pour la traduction d'images de textes imprimés ou dactylographiés en fichiers de texte. Un ordinateur réclame pour l'exécution de cette tâche un logiciel d'OCR. Celui-ci permet de récupérer le texte dans l'image d'un texte imprimé et de le sauvegarder dans un fichier pouvant être exploité dans un traitement de texte pour enrichissement, et stocké dans une base de données ou sur un autre support exploitable par un système informatique. La première machine d'OCR fut créée par Gustav Tauschek, un ingénieur allemand, en 1929. Elle contenait un détecteur photosensible qui pointait une lumière sur un mot lorsqu’il correspondait à un gabarit contenu dans sa mémoire. En 1950, Frank Rowlett, qui avait cassé le code diplomatique japonais PURPLE, demanda à David Shepard, un cryptanalyste de l'AFSA (prédécesseur de la NSA américaine), de travailler avec Louis Tordella pour faire à l'agence des propositions de procédures d'automatisation des données. La question incluait le problème de la conversion de messages imprimés en langage machine pour le traitement informatique. Shepard décida qu'il devait être possible de construire une machine pour le faire, et, avec l'aide de Harvey Cook, un ami, construisit « Gismo » dans son grenier pendant ses soirées et ses week-ends. Le fait fut rapporté dans le Washington Daily News du et dans le New York Times du après le dépôt du brevet numéro 2 663 758. Shepard fonda alors Intelligent Machines Research Corporation (IMR), qui livra les premiers systèmes d'OCR au monde exploités par des sociétés privées. Le premier système privé fut installé au Reader's Digest en 1955, et, de nombreuses années plus tard, fut offert par le Readers Digest au Smithsonian, où il fut mis en exposition.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
EE-451: Image analysis and pattern recognition
This course gives an introduction to the main methods of image analysis and pattern recognition.
MATH-110(a): Advanced linear algebra I - vector spaces
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire (pour les futurs mathématiciens) et de démontrer rigoureusement les résultats principaux de ce sujet.
PHYS-324: Classical electrodynamics
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
Afficher plus
Concepts associés (25)
Apprentissage automatique
L'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Reconnaissance de formes
thumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Digital image processing
Digital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.