Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace ...
Social insects, such as ants, termites, and honeybees, have evolved sophisticated societies where the collaborative efforts of "simple" individuals can lead to the emergence of complex dynamics. The reliance of each organism on the collective is so great t ...
The rise of robotic body augmentation brings forth new developments that will transform robotics, human-machine interaction, and wearable electronics. Extra robotic limbs, although building upon restorative technologies, bring their own set of challenges i ...
Stories from the future of intelligent machines—from rescue drones to robot spouses—and accounts of cutting-edge research that could make it all possible. Tech prognosticators promised us robots—autonomous humanoids that could carry out any number of tasks ...
Robotic technologies have shown the capability to interact with living organisms and even to form integrated mixed societies composed of living and artificial agents. Biocompatible robots, incorporating sensing and actuation capable of generating and respo ...
Shape-changing robots adapt their own morphology to address a wider range of functions or environments than is possible with a fixed or rigid structure. Akin to biological organisms, the ability to alter shape or configuration emerges from the underlying m ...
Lower limb exoskeletons (LLE) are robotic devices developed to assist walk. In the field of healthcare, this technology has been available for almost a decade, yet it still faces important acceptance issues. While LLE were first developed for patients with ...
Tissues morphogenesis and homeostasis involve the spatiotemporal regulation of mechanics at multiple scales. Characterization of mechanical properties of biological systems as well as investigating the effects of mechanical forces on biological function ar ...
This letter presents closed-loop position control of a pneumatically actuated modular robotic platform "pneumagami" that can be stacked to enlarge work and design space for wearable applications. The module is a 3 degrees of freedom (DoF) parallel robot wi ...
Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual perf ...