A seismic shadow zone is an area of the Earth's surface where seismographs cannot detect direct P waves and/or S waves from an earthquake. This is due to liquid layers or structures within the Earth's surface. The most recognized shadow zone is due to the core-mantle boundary where P waves are refracted and S waves are stopped at the liquid outer core; however, any liquid boundary or body can create a shadow zone. For example, magma reservoirs with a high enough percent melt can create seismic shadow zones. The earth is made up of different structures: the crust, the mantle, the inner core and the outer core. The crust, mantle, and inner core are typically solid; however, the outer core is entirely liquid. A liquid outer core was first shown in 1906 by Geologist Richard Oldham. Oldham observed seismograms from various earthquakes and saw that some seismic stations did not record direct S waves, particularly ones that were 120° away from the hypocenter of the earthquake. In 1913, Beno Gutenberg noticed the abrupt change in seismic velocities of the P waves and disappearance of S waves at the core-mantle boundary. Gutenberg attributed this due to a solid mantle and liquid outer core, calling it the Gutenberg discontinuity. The main observational constraint on identifying liquid layers and/or structures within the earth come from seismology. When an earthquake occurs, seismic waves radiate out spherically from the earthquake's hypocenter. Two types of body waves travel through the Earth: primary seismic waves (P waves) and secondary seismic waves (S waves). P waves travel with motion in the same direction as the wave propagates and S-waves travel with motion perpendicular to the wave propagation (transverse). The P waves are refracted by the liquid outer core of the Earth and are not detected between 104° and 140° (between approximately 11,570 and 15,570 km or 7,190 and 9,670 mi) from the hypocenter. This is due to Snell's law, where a seismic wave encounters a boundary and either refracts or reflects.
Aurelio Muttoni, Lorenzo Martinelli, António Manuel Pinho Ramos, Andri Setiawan
Brice Tanguy Alphonse Lecampion, Alexis Alejandro Sáez Uribe