Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les défis de la publication de données préservant la vie privée, y compris les exemples de désidentification et les menaces pour la vie privée, et présente une étude de cas sur les efforts d'Airbnb pour lutter contre les pratiques racistes tout en protégeant la vie privée des utilisateurs.
Explore la génération de données synthétiques pour la publication de données préservant la vie privée, en évaluant son efficacité contre les menaces à la vie privée dans des ensembles de données brutes.
Déplacez-vous dans la protection de la vie privée analyse fédérée pour la médecine personnalisée, discuter des défis, des solutions, et des applications du monde réel.
Explore les défis de l'anonymat K, de la diversité l et de la désidentification des données, en utilisant des exemples concrets et en discutant des efforts d'Airbnb en matière de protection de la vie privée.
Introduit le cryptage homomorphe, permettant le calcul sur des données cryptées sans décryptage, couvrant la sécurité, les applications et les aspects pratiques.
Explore les aspects juridiques du partage des données de recherche en santé en Suisse, en mettant l'accent sur les mesures de protection et de sécurité des données.
Explore les défis et les perspectives en matière de protection des données dans la recherche sur la cybersanté, en mettant l'accent sur la conformité au RGPD, la gestion sensible des données de santé et les agents décentralisés.