Publications associées (73)

DBFS: Dynamic Bitwidth-Frequency Scaling for Efficient Software-defined SIMD

Giovanni Ansaloni, Alexandre Sébastien Julien Levisse, Pengbo Yu, Flavio Ponzina

Machine learning algorithms such as Convolutional Neural Networks (CNNs) are characterized by high robustness towards quantization, supporting small-bitwidth fixed-point arithmetic at inference time with little to no degradation in accuracy. In turn, small ...
2024

COMMUNICATION LOWER BOUNDS AND OPTIMAL ALGORITHMS FOR MULTIPLE TENSOR-TIMES-MATRIX COMPUTATION

Laura Grigori

Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine ...
Philadelphia2024

Robot Learning using Tensor Networks

Suhan Narayana Shetty

In various robotics applications, the selection of function approximation methods greatly influences the feasibility and computational efficiency of algorithms. Tensor Networks (TNs), also referred to as tensor decomposition techniques, present a versatile ...
EPFL2024

STREAMING TENSOR TRAIN APPROXIMATION

Daniel Kressner

Tensor trains are a versatile tool to compress and work with high-dimensional data and functions. In this work we introduce the streaming tensor train approximation (STTA), a new class of algorithms for approximating a given tensor ' in the tensor train fo ...
Philadelphia2023

Design Space Exploration for Partitioning Dataflow Program on CPU-GPU Heterogeneous System

Marco Mattavelli, Simone Casale Brunet, Aurélien François Gilbert Bloch

Dataflow programming is a methodology that enables the development of high-level, parametric programs that are independent of the underlying platform. This approach is particularly useful for heterogeneous platforms, as it eliminates the need to rewrite ap ...
SPRINGER2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.