In the quantum mechanics study of optical phase space, the displacement operator for one mode is the shift operator in quantum optics, where is the amount of displacement in optical phase space, is the complex conjugate of that displacement, and and are the lowering and raising operators, respectively. The name of this operator is derived from its ability to displace a localized state in phase space by a magnitude . It may also act on the vacuum state by displacing it into a coherent state. Specifically, where is a coherent state, which is an eigenstate of the annihilation (lowering) operator. The displacement operator is a unitary operator, and therefore obeys where is the identity operator. Since , the hermitian conjugate of the displacement operator can also be interpreted as a displacement of opposite magnitude (). The effect of applying this operator in a similarity transformation of the ladder operators results in their displacement. The product of two displacement operators is another displacement operator whose total displacement, up to a phase factor, is the sum of the two individual displacements. This can be seen by utilizing the Baker–Campbell–Hausdorff formula. which shows us that: When acting on an eigenket, the phase factor appears in each term of the resulting state, which makes it physically irrelevant. It further leads to the braiding relation The Kermack-McCrae identity gives two alternative ways to express the displacement operator: The displacement operator can also be generalized to multimode displacement. A multimode creation operator can be defined as where is the wave vector and its magnitude is related to the frequency according to .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.