Asymmetric numeral systems (ANS) is a family of entropy encoding methods introduced by Jarosław (Jarek) Duda from Jagiellonian University, used in data compression since 2014 due to improved performance compared to previous methods. ANS combines the compression ratio of arithmetic coding (which uses a nearly accurate probability distribution), with a processing cost similar to that of Huffman coding. In the tabled ANS (tANS) variant, this is achieved by constructing a finite-state machine to operate on a large alphabet without using multiplication.
Among others, ANS is used in the Facebook Zstandard compressor (also used e.g. in Linux kernel, Android operating system, was published as RFC 8478 for MIME and HTTP), Apple LZFSE compressor, Google Draco 3D compressor (used e.g. in Pixar Universal Scene Description format) and PIK image compressor, DNA compressor from SAMtools utilities,
Dropbox DivANS compressor, Microsoft DirectStorage BCPack texture compressor, and JPEG XL image compressor.
The basic idea is to encode information into a single natural number . In the standard binary number system, we can add a bit of information to by appending at the end of , which gives us . For an entropy coder, this is optimal if . ANS generalizes this process for arbitrary sets of symbols with an accompanying probability distribution . In ANS, if the information from is appended to to result in , then . Equivalently, , where is the number of bits of information stored in the number , and is the number of bits contained in the symbol .
For the encoding rule, the set of natural numbers is split into disjoint subsets corresponding to different symbols - like into even and odd numbers, but with densities corresponding to the probability distribution of the symbols to encode. Then to add information from symbol into the information already stored in the current number , we go to number being the position of the -th appearance from the -th subset.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Le codage entropique (ou codage statistique à longueur variable) est une méthode de codage de source sans pertes, dont le but est de transformer la représentation d'une source de données pour sa compression ou sa transmission sur un canal de communication. Les principaux types de codage entropique sont le codage de Huffman et le codage arithmétique. Le codage entropique utilise des statistiques sur la source pour construire un code, c'est-à-dire une application qui associe à une partie de la source un mot de code, dont la longueur dépend des propriétés statistiques de la source.
Explore les principes de compression d'images, en se concentrant sur JPEG 2000, couvrant le codage basé sur la transformation, la quantification, le codage entropie, la région d'intérêt, la résilience aux erreurs et les implémentations logicielles.
Recent advances in data processing and communication systems have led to a continuous increase in the amount of data communicated over today’s networks. These large volumes of data pose new challenges on the current networking infrastructure that only offe ...
Joint Photographic Experts Group (JPEG) XS is a new International Standard from the JPEG Committee (formally known as ISO/International Electrotechnical Commission (IEC) JTC1/SC29/WG1). It defines an interoperable, visually lossless low-latency lightweight ...
Nowadays, most software and hardware applications are committed to reduce the footprint and resource usage of data. In this general context, lossless data compression is a beneficial technique that encodes information using fewer (or at most equal number o ...