Efficient nutrient recycling underpins the ecological success of cnidarian-algal symbioses in oligotrophic waters. In these symbioses, nitrogen limitation restricts the growth of algal endosymbionts in hospite and stimulates their release of photosynthates ...
The cnidarian-dinoflagellate symbiosis is a mutualistic intracellular association based on the photosynthetic activity of the endosymbiont. This relationship involves significant constraints and requires co-evolution processes, such as an extensive capacit ...
The coral-algal symbiosis is maintained by a constant and limited nitrogen availability in the holobiont. Denitrifiers, i.e., prokaryotes reducing nitrate/nitrite to dinitrogen, could contribute to maintaining the nitrogen limitation in the coral holobiont ...
Cnidarian-dinoflagellate photosynthetic symbioses are fundamental to biologically diverse and productive coral reef ecosystems. The hallmark of this symbiotic relationship is the ability of dinoflagellate symbionts to supply their cnidarian host with a wid ...
Many cnidarians engage in endosymbioses with microalgae of the family Symbiodiniaceae. In this association, the fitness of the cnidarian host is closely linked to the photosynthetic performance of its microalgal symbionts. Phototaxis may enable semi-sessil ...