Freddy RadtkeFreddy Radtke obtained his Ph.D. in Molecular Biology from the University of Zürich in 1994. In 1995, he started his postdoctoral research in the laboratory of Michel Aguet at Genentech, Inc. (San Francisco, USA). In 1997, he returned to Switzerland with Michel Aguet and finished his postdoctoral fellowship at the Swiss Institute for Experimental Cancer Research (ISREC) in Lausanne. From 1999‑2005, he was a group leader and Associate Member at the Ludwig Institute for Cancer Research. Freddy Radtke then joined ISREC in January 2006 as a senior scientist and in July 2006, he was appointed Associate Professor at the EPFL School of Life Sciences
Giorgio MargaritondoDe nationalité américaine et suisse, Giorgio Margaritondo est né à Rome (Italie) en 1946. Il a reçu la Laurea cum laude en physique de l'Université de Rome en 1969. De 1969 à 1978, il a travaillé pour le Consiglio Nazionale delle Ricerche (CNR), à Rome, à Frascati et, pendant la période 1975-1977, chez Bell Laboratories aux Etats-Unis. De 1978 à 1990, il est professeur de physique à l'Université du Wisconsin, à Madison (Etats-Unis); en 1984, il est nommé vice-directeur au Centre de rayonnement synchrotron de la même université. En 1990, il est engagé à l'EPFL comme professeur ordinaire et dirige l'Institut de physique appliquée au Département de physique. Il a été également membre honoraire du corps professoral de l'Université Vanderbilt à Nashville. En 2001 il a été nommé doyen de la Faculté des sciences de base de l'EPFL; en 2004, il a été nommé Vice-président pour les affaires académiques.; en 2010 et jusqu'à sa retraite de l'EPFL en 2016 il est devenu Doyen de la formation continue. A côté de ses cours de physique générale, son activité de recherche porte sur la physique des semiconducteurs et des supraconducteurs (états électroniques, surfaces, interfaces) et des systèmes biologiques; ses principales méthodes expérimentales sont la spectroscopie et la spectromicroscopie électroniques, l'imagerie aux rayons x et la microscopie SNOM, y compris les expériences avec le rayonnement synchrotron et le laser à électrons libres. Auteur d'environ 700 articles scientifiques et de 9 livres, il a aussi été responsable de 1995 à 1998 des programmes scientifiques du Synchrotron ELETTRA à Trieste. Depuis 1997, il a été le coordinateur de la table ronde de la Commission européenne pour le rayonnement synchrotron, et président du conseil de la "Integrated Initiative" de la Commission européenne pour les synchrotrons et les lasers à électrons libres (IA-SFS, ensuite ELISA), le plus grand réseau au monde de laboratoires dans ce domaine. En 2011-2015, il a été Editor-in-Chief du Journal of Physics D (Applied Physics). A présent, il est vice-président du conseil de l'Università della Svizzera Italiana (USI) et président du Scientific and Technological Committee de l'Istituto Italiano di Tecnologia (IIT). Il est "Fellow" de l'American Physical Society et de l'American Vacuum Society; il est également "Fellow and Chartered Physicist" de l'Institute of Physics.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Didier TronoAprès des études de médecine à l’Université de Genève et une formation clinique en pathologie, médecine interne et maladies infectieuses à Genève et au Massachusetts General Hospital de Boston, Didier Trono s’engage dans une carrière scientifique au Whitehead Institute du MIT. En 1990, il est recruté par le Salk Institute de San Diego pour lancer un centre de recherche sur le SIDA. Il rentre en Europe sept ans plus tard, avant de prendre en 2004 les rênes de la toute nouvelle faculté des Sciences de la Vie de l’EPFL, dont il orchestre le développement et qu’il dirige jusqu’en 2012. Il participe aujourd’hui activement à la coordination des efforts de la Suisse en vue de l’intégration des nouvelles technologies dans le domaine de la médecine de précision et de la santé personnalisée.
Daniel ConstamDaniel Constam received his doctoral degree in Natural Sciences from ETH Zürich in the neuroimmunology group of Adriano Fontana (1993). For postdoctoral studies, he joined the laboratory of Elizabeth Robertson as an EMBO fellow at Harvard University to characterize proprotein convertase (PC) functions in mouse models of early embryogenesis (1994-1999). As an ISREC group leader (>2000) and Associate Professor at EPFL (>2007), he initially continued to study pluripotency and lineage differentiation during development and found that several secreted PCs jointly regulate cell-cell adhesion and TGFβ signaling pathways at the cross-roads of stem cell and cancer biology. To map the proteolytic activity of PCs and their relative distribution in exocytic or endocytic vesicles, his lab developed PC-specific FRET sensors for high resolution live imaging in normal cells and in tumour-host interactions. His studies on TGFβ signaling also identified the RNA-binding protein Bicc1 and its self-polymerization in membrane-less organelles as regulators of mRNA translation and cell metabolism that cooperate with primary cilia to prevent cystic growth in renal tubules and in pancreatic and bile ducts.
Philippe RenaudPhilippe Renaud is Professor at the Microsystem Laboratory (LMIS4) at EPFL. He is also the scientific director of the EPFL Center of MicroNanoTechnology (CMI). His main research area is related to micronano technologies in biomedical applications (BioMEMS) with emphasis on cell-chips, nanofluidics and bioelectronics. Ph. Renaud is invloved in many scientifics papers in his research area. He received his diploma in physics from the University of Neuchâtel (1983) and his Ph.D. degree from the University of Lausanne (1988). He was postdoctoral fellow at University of California, Berkeley (1988-89) and then at the IBM Zürich Research Laboratory in Switzerland (1990-91). In 1992, he joined the Sensors and Actuators group of the Swiss Center for Electronics and Microtechnology (CSEM) at Neuchâtel, Switzerland. He was appointed assistant professor at EPFL in 1994 and full professor in 1997. In summer 1996, he was visiting professor at the Tohoku University, Japan. Ph. Renaud is active in several scientific committee (scientific journals, international conferences, scientific advisory boards of companies, PhD thesis committee). He is also co-founder of the Nanotech-Montreux conference. Ph. Renaud is committed to valorization of basic research through his involvement in several high-tech start-up companies.