Publications associées (41)

Task-driven neural network models predict neural dynamics of proprioception: Neural network model weights

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
EPFL Infoscience2024

Task-driven neural network models predict neural dynamics of proprioception: Experimental data, activations and predictions of neural network models

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Here we provide the neural data, activation and predictions for the best models and result dataframes of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the behavioral and neural experimental data (cu ...
EPFL Infoscience2024

Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation

Jean-Philippe Thiran, Erick Jorge Canales Rodriguez, Alessandro Daducci, Cristina Granziera, Muhamed Barakovic

At the typical spatial resolution of MRI in the human brain, approximately 60–90% of voxels contain multiple fiber populations. Quantifying microstructural properties of distinct fiber populations within a voxel is therefore challenging but necessary. Whil ...
2020

Task-driven hierarchical deep neural network models of the proprioceptive pathway

Alexander Mathis, Mackenzie Mathis, Kai Jappe Sandbrink, Matthias Bethge, Pranav Mamidanna

Biological motor control is versatile and efficient. Muscles are flexible and undergo continuous changes requiring distributed adaptive control mechanisms. How proprioception solves this problem in the brain is unknown. Here we pursue a task-driven modelin ...
Neuroscience2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.