Publications associées (8)

Improving Deepfake Detectors against Real-world Perturbations with Amplitude-Phase Switch Augmentation

Touradj Ebrahimi, Yuhang Lu, Ruizhi Luo

In recent years, the remarkable progress in facial manipulation techniques has raised social concerns due to their potential malicious usage and has received considerable attention from both industry and academia. While current deep learning-based face for ...
2023

Distributed Cyber-Attack Detection in the Secondary Control of DC Microgrids

Giancarlo Ferrari Trecate, Pulkit Nahata, Mustafa Sahin Turan

The paper considers the problem of detecting cyber-attacks occurring in communication networks typically used in the secondary control layer of DC microgrids. The proposed distributed methodology allows for scalable monitoring of a microgrid and is able to ...
IEEE2018

Finding Trojan Message Vulnerabilities in Distributed Systems

Rachid Guerraoui, George Candea, Radu Banabic

Trojan messages are messages that seem correct to the receiver but cannot be generated by any correct sender. Such messages constitute major vulnerability points of a distributed system---they constitute ideal targets for a malicious actor and facilitate f ...
ACM2014

Scalable Network-layer Defense Against Internet Bandwidth-Flooding Attacks

In a bandwidth-flooding attack, compromised sources send high-volume traffic to the target with the purpose of causing congestion in its tail circuit and disrupting its legitimate communications. In this paper, we present Active Internet Traffic Filtering ...
2009

Optimal Filtering of Source Address Prefixes: Models and Algorithms

How can we protect the network infrastructure from malicious traffic, such as scanning, malicious code propagation, and distributed denial-of-service (DDoS) attacks? One mechanism for blocking malicious traffic is filtering: access control lists (ACLs) can ...
2009

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.