Résumé
Les nombres quantiques sont des ensembles de nombres définissant l'état quantique d'un système. Chacun de ces nombres définit la valeur d'une quantité conservée dans la dynamique d'un système quantique. Ce sont des nombres entiers ou demi-entiers, de sorte que les grandeurs observables correspondantes sont quantifiées et ne peuvent prendre que des valeurs discrètes : c'est une différence fondamentale entre la mécanique quantique et la mécanique classique, dans laquelle toutes ces grandeurs peuvent prendre des valeurs continues. En physique des particules, les nombres quantiques dits « intrinsèques » sont des caractéristiques de chaque type de particule élémentaire. Par exemple, les nombres quantiques des électrons peuvent être définis comme les ensembles de valeurs numériques solutions de l'équation de Schrödinger pour l'atome d'hydrogène. L'état quantique des électrons des atomes est entièrement défini par quatre nombres quantiques généralement notés n, l, m et m, mais chaque système quantique est décrit par un ensemble de nombres quantiques qui lui est propre, de sorte qu'on ne peut dresser de liste exhaustive des nombres quantiques. En effet, la dynamique d'un système quantique est décrite par un opérateur hamiltonien quantique, noté . Il existe au moins un nombre quantique correspondant à l'énergie du système quantique, c'est-à-dire de l'état satisfaisant l'équation aux valeurs propres de l'hamiltonien. Il existe également autant d'autres nombres quantiques qu'il y a d'opérateurs indépendants qui commutent avec l'hamiltonien ; comme il existe généralement plusieurs ensembles d'opérateurs indépendants pour un même système, il existe également plusieurs jeux de nombres quantiques pouvant décrire un même système. Plusieurs modèles quantiques ont été proposés pour décrire le comportement des électrons dans les atomes, mais le principal d'entre eux est la théorie de l'orbitale moléculaire de Friedrich Hund et Robert Mulliken à partir des travaux d'Erwin Schrödinger, John Slater et John Lennard-Jones.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (4)
Concepts associés (113)
Spin quantum number
In physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
Nombre quantique
Les nombres quantiques sont des ensembles de nombres définissant l'état quantique d'un système. Chacun de ces nombres définit la valeur d'une quantité conservée dans la dynamique d'un système quantique. Ce sont des nombres entiers ou demi-entiers, de sorte que les grandeurs observables correspondantes sont quantifiées et ne peuvent prendre que des valeurs discrètes : c'est une différence fondamentale entre la mécanique quantique et la mécanique classique, dans laquelle toutes ces grandeurs peuvent prendre des valeurs continues.
Niveau d'énergie
Un niveau d'énergie est une quantité utilisée pour décrire les systèmes en mécanique quantique et par extension dans la physique en général, sachant que, s'il y a bien quantification de l'énergie, à un niveau d'énergie donné correspond un « état du système » donné ; à moins que le niveau d'énergie soit dit « dégénéré ». La notion de niveau d'énergie a été proposée en 1913 par le physicien danois Niels Bohr.
Afficher plus
Cours associés (41)
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
PHYS-314: Quantum physics II
L'objectif de ce cours est de familiariser l'étudiant avec les concepts, les méthodes et les conséquences de la physique quantique. En particulier, le moment cinétique, la théorie de perturbation, les
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
Afficher plus
Séances de cours associées (251)
Interaction des particules quantiques
Discute de l'interaction quantique des particules, du confinement et de l'énergie potentielle dans les espaces confinés.
Mécanique quantique : composition angulaire
Explore la composition des moments angulaires et des coefficients de Clebsch-Gordan en mécanique quantique.
Délégation quantique de calcul
Couvre le concept de délégation quantique du calcul et la relation entre MIP et RE, en abordant les questions fréquentes et en discutant des matériaux utiles et des interactions avec les appareils quantiques.
Afficher plus
MOOCs associés (1)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology