Concept

Radical probabilism

Radical probabilism is a hypothesis in philosophy, in particular epistemology, and probability theory that holds that no facts are known for certain. That view holds profound implications for statistical inference. The philosophy is particularly associated with Richard Jeffrey who wittily characterised it with the dictum "It's probabilities all the way down." Subjective probability Bayes' theorem states a rule for updating a probability conditioned on other information. In 1967, Ian Hacking argued that in a static form, Bayes' theorem only connects probabilities that are held simultaneously; it does not tell the learner how to update probabilities when new evidence becomes available over time, contrary to what contemporary Bayesians suggested. According to Hacking, adopting Bayes' theorem is a temptation. Suppose that a learner forms probabilities Pold(A & B) = p and Pold(B) = q. If the learner subsequently learns that B is true, nothing in the axioms of probability or the results derived therefrom tells him how to behave. He might be tempted to adopt Bayes' theorem by analogy and set his Pnew(A) = Pold(A | B) = p/q. In fact, that step, Bayes' rule of updating, can be justified, as necessary and sufficient, through a dynamic Dutch book argument that is additional to the arguments used to justify the probability axioms. This argument was first put forward by David Lewis in the 1970s though he never published it. The dynamic Dutch book argument for Bayesian updating has been criticised by Hacking, Kyburg, Christensen, and Maher. It was defended by Brian Skyrms. That works when the new data is certain. C. I. Lewis had argued that "If anything is to be probable then something must be certain". There must, on Lewis' account, be some certain facts on which probabilities were conditioned. However, the principle known as Cromwell's rule declares that nothing, apart from a logical law, if that, can ever be known for certain. Jeffrey famously rejected Lewis' dictum.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.